SLAM(Simultaneous Localization and Mapping,即时定位与地图构建),自1988年被提出以来,主要用于研究机器人移动的智能化。对于完全未知的室内环境,配备激光雷达等核心传感器后,SLAM技术可以帮助机器人构建室内环境地图,助力机器人的自主行走。SLAM问题可以描述为:机器人在未知环境中从一个未知位置开始移动,在移动过程中根据位置估计和传感器数据进行自身定位,同时建造增量式地图。
3.Lidar SLAM指利用激光雷达作为传感器,获取地图数据,使机器人实现同步定位与地图构建。就技术本身而言,经过多年验证,已相当成熟,但Lidar成本昂贵这一瓶颈问题亟待解决。Google无人驾驶汽车正是采用该项技术,车顶安装的激光雷达来自美国 Velodyne公司,售价高达7万美元以上。这款激光雷达可以在高速旋转时向周围发射64束激光,激光碰到周围物体并返回,便可计算出车体与周边物体的距离。计算机系统再根据这些数据描绘出精细的3D地形图,然后与高分辨率地图相结合,生成不同的数据模型供车载计算机系统使用。激光雷达占去了整车成本的一半,这可能也是 Google 无人车迟迟无法量产的原因之一。