ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集【特征列分段→独热编码】进行回归预测(房价预测)+预测新数据得分
相关推荐
-
水务一线 | XGBoost集成模型——灵活的边界流量计日流量预测方法
栏目导读 新一代信息技术的加速变革支撑了智慧水务的飞速发展,现代化水厂的建设为我国供水行业的整体发展带来了很大的借鉴与思考."水务一线"分享基层水厂.污水厂日常工作中的科技创新.技 ...
-
JCIM|XGraphBoost:基于图神经网络提取特征的一种更好的分子特性预测模型
今天给大家介绍的是 Journal of Chemical Information and Modeling 上,一篇有关提取图神经网络特征.更好地预测分子特性的方法的文章 "XGraphB ...
-
TF之LSTM:利用LSTM算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)
TF之LSTM:利用LSTM算法对Boston(波士顿房价)数据集[13+1,506]进行回归预测(房价预测) 相关文章 DL之LSTM:利用LSTM算法对Boston(波士顿房价)数据集[13+1, ...
-
ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能
ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集[13+1,506]进行回归预测(房价预测)来比较各模型性能 导读 通过利用13种机器学习算法,分别是LiR.kNN.SVR.D ...
-
ML之KMeans:利用KMeans算法对Boston房价数据集(两特征+归一化)进行二聚类分析
ML之KMeans:利用KMeans算法对Boston房价数据集(两特征+归一化)进行二聚类分析 相关文章 ML之KMeans:利用KMeans算法对Boston房价数据集(两特征+归一化)进行二聚类 ...
-
ML之回归预测之Lasso:利用Lasso算法对红酒品质wine数据集实现红酒口感评分预测(实数值评分预测)
ML之回归预测之Lasso:利用Lasso算法对红酒品质wine数据集实现红酒口感评分预测(实数值评分预测) 输出结果 设计思路 核心代码 t=3 if t==1: X = numpy.array(x ...
-
ML之kNN:利用kNN算法对莺尾(Iris)数据集进行多分类预测
ML之kNN:利用kNN算法对莺尾(Iris)数据集进行多分类预测 输出结果 输出数据说明: Iris Plants Database ==================== Notes ----- ...
-
ML之FE:基于LiR/Ridge/Lasso/ElasticNet/AvgModels/RF算法(GSCV) 利用某市房价数据集(特征工程处理)进行房价回归预测
ML之FE:基于LiR/Ridge/Lasso/ElasticNet/AvgModels/RF算法(GSCV) 利用某市房价数据集(特征工程处理)进行房价回归预测 输出结果 1.输出基本信息 bj_d ...
-
ML之xgboost:利用xgboost算法(特征筛选和GridSearchCV)对数据集实现回归预测
ML之xgboost:利用xgboost算法(特征筛选和GridSearchCV)对数据集实现回归预测 输出结果 ['EnterCOD', 'EnterBOD', 'EnterAD', 'EnterZ ...
-
ML之xgboost:利用xgboost算法(自带方式)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
ML之xgboost:利用xgboost算法(自带方式)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 输出结果 1.xgboost(num_trees ...
-
ML之xgboost:利用xgboost算法(结合sklearn)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测)
ML之xgboost:利用xgboost算法(结合sklearn)训练mushroom蘑菇数据集(22+1,6513+1611)来预测蘑菇是否毒性(二分类预测) 输出结果 设计思路 核心代码 bst ...
