Paper:《CatBoost: unbiased boosting with categorical features》的翻译与解读
相关推荐
-
机器学习-集成学习-boosting-catboost原理
概述 CatBoost是俄罗斯的搜索巨头Yandex在2017年开源的机器学习库,是Boosting族算法的一种.CatBoost和XGBoost.LightGBM并称为GBDT的三大主流神器,都是在 ...
-
Paper:《Adam: A Method for Stochastic Optimization》的翻译与解读
Paper:<Adam: A Method for Stochastic Optimization>的翻译与解读Adam: A Method for Stochastic Optimiza ...
-
Paper:《Spatial Transformer Networks》的翻译与解读
Paper:<Spatial Transformer Networks>的翻译与解读 <Spatial Transformer Networks>的翻译与解读 链接https: ...
-
Paper之CV:《One Millisecond Face Alignment with an Ensemble of Regression Trees》的翻译与解读
Paper之CV:<One Millisecond Face Alignment with an Ensemble of Regression Trees>的翻译与解读 One Milli ...
-
Paper:2017年的Google机器翻译团队《Transformer:Attention Is All You Need》翻译并解读
Paper:2017年的Google机器翻译团队<Transformer:Attention Is All You Need>翻译并解读 论文评价 2017年,Google机器翻译团队发表 ...
-
Paper:《Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields ∗》翻译并解读
Paper:<Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields ∗>翻译并解读论文:<Realt ...
-
Paper:《Graph Neural Networks: A Review of Methods and Applications》翻译与解读
Paper:<Graph Neural Networks: A Review of Methods and Applications>翻译与解读 <Graph Neural Netw ...
-
Paper之EfficientDet: 《Scalable and Efficient Object Detection—可扩展和高效的目标检测》的翻译及其解读
导读:2019年11月21日,谷歌大脑团队发布了论文 EfficientDet: Scalable and Efficient Object Detection .Google Brain 团队的三位 ...
-
Paper:《Generating Sequences With Recurrent Neural Networks》的翻译和解读
Paper:<Generating Sequences With Recurrent Neural Networks>的翻译和解读Generating Sequences With Rec ...
-
Paper:2020年3月30日何恺明团队最新算法RegNet—来自Facebook AI研究院《Designing Network Design Spaces》的翻译与解读
Paper:2020年3月30日何恺明团队最新算法RegNet-来自Facebook AI研究院<Designing Network Design Spaces>的翻译与解读导读:卧槽,卧 ...
-
Paper:Xavier参数初始化之《Understanding the difficulty of training deep feedforward neural networks》的翻译与解读
Paper:Xavier参数初始化之<Understanding the difficulty of training deep feedforward neural networks>的 ...
