(9条消息) Backtrader量化平台教程(八) TimeFrame
AD:(本人录制的backtrader视频课程,大家多多支持哦~ https://edu.csdn.net/course/detail/9040)
无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。教程链接:https://www.cbedai.net/qtlyx
有时候我们原有的数据和我们想要的数据不是同一个时间框架下的。譬如,我们手上只有分钟级别的数据,而我们想要的是日线级别的数据,或者说手上是日线级别的数据,希望变成周线级别的数据。在backtrader中,有很好的的方法解决这样的问题。总而言之,就是timeframe转换的问题
1.resampling
这个方法,字面意思看起来是“采样”,准确的来说,是上采样,从小的时间点变成大的时间点。
方法很简单,就是在添加数据的时候,不在使用 cerebro.adddata(data),而是使用cerebro.resampledata(data, **kwargs)。
后面的参数主要有两个,一个是timeframe,也就是你希望变成的timeframe是多少,day还是week;另外一个是compression,就是对bar进行压缩。
2.代码
所有的代码是这样的:
from __future__ import (absolute_import, division, print_function,unicode_literals)import datetime # For datetime objectsimport backtrader as btimport backtrader.feeds as btfeedsimport backtrader.indicators as btindimport pandas as pdimport numpy as npclass MyStrategy(bt.Strategy):params = (('ssa_window', 15),('maperiod', 15),)def log(self, txt, dt=None):''' Logging function fot this strategy'''dt = dt or self.datas[0].datetime.date(0)print('%s, %s' % (dt.isoformat(), txt))def __init__(self):# Keep a reference to the "close" line in the data[0] dataseriesself.dataclose = self.datas[0].close# To keep track of pending orders and buy price/commissionself.order = Noneself.buyprice = Noneself.buycomm = Noneself.sma = bt.indicators.SimpleMovingAverage(self.datas[0], period=self.params.maperiod)def start(self):print("the world call me!")def prenext(self):print("not mature")def notify_order(self, order):if order.status in [order.Submitted, order.Accepted]:# Buy/Sell order submitted/accepted to/by broker - Nothing to doreturn# Check if an order has been completed# Attention: broker could reject order if not enougth cashif order.status in [order.Completed]:if order.isbuy():self.log('BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %(order.executed.price,order.executed.value,order.executed.comm))self.buyprice = order.executed.priceself.buycomm = order.executed.commelse: # Sellself.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %(order.executed.price,order.executed.value,order.executed.comm))self.bar_executed = len(self)elif order.status in [order.Canceled, order.Margin, order.Rejected]:self.log('Order Canceled/Margin/Rejected')self.order = Nonedef notify_trade(self, trade):if not trade.isclosed:returnself.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %(trade.pnl, trade.pnlcomm))def next(self):# Simply log the closing price of the series from the referenceself.log('Close, %.2f' % self.dataclose[0])# Check if an order is pending ... if yes, we cannot send a 2nd oneif self.order:return# Check if we are in the marketif not self.position:# Not yet ... we MIGHT BUY if ...if self.dataclose[0] > self.sma[0]:# BUY, BUY, BUY!!! (with all possible default parameters)self.log('BUY CREATE, %.2f' % self.dataclose[0])# Keep track of the created order to avoid a 2nd orderself.order = self.buy()else:if self.dataclose[0] < self.sma[0]:# SELL, SELL, SELL!!! (with all possible default parameters)self.log('SELL CREATE, %.2f' % self.dataclose[0])# Keep track of the created order to avoid a 2nd orderself.order = self.sell()def stop(self):print("death")if __name__ == '__main__':# Create a cerebro entitycerebro = bt.Cerebro(stdstats=False)# Add a strategycerebro.addstrategy(MyStrategy)dataframe = pd.read_csv('RB.SHF.csv', index_col=0, parse_dates=True)data0 = bt.feeds.PandasData(dataname=dataframe,fromdate=datetime.datetime(2014, 5, 13),todate=datetime.datetime(2014, 6, 20),timeframe=bt.TimeFrame.Minutes)# Add the Data Feed to Cerebrocerebro.adddata(data0)data2 = cerebro.resampledata(data0, timeframe=bt.TimeFrame.Days)cerebro.run()cerebro.plot(style='bar')
老样子,我们来看一下比较核心的代码。
读取数据,数据为分钟级别的数据,如下:
2014-05-13 08:59:00.005004,3198.0,3198.0,3198.0,3198.0,2148.0,0 2014-05-13 09:00:00.005000,3198.0,3202.0,3195.0,3195.0,37426.0,0 2014-05-13 09:01:00.004997,3195.0,3199.0,3194.0,3198.0,19704.0,0 2014-05-13 09:02:00.005003,3198.0,3199.0,3193.0,3193.0,22682.0,0 2014-05-13 09:03:00.005000,3193.0,3195.0,3192.0,3193.0,23064.0,0 2014-05-13 09:04:00.004996,3193.0,3194.0,3190.0,3190.0,29058.0,0 2014-05-13 09:05:00.005002,3191.0,3191.0,3186.0,3188.0,25044.0,0 2014-05-13 09:06:00.004999,3188.0,3189.0,3186.0,3189.0,16020.0,0 2014-05-13 09:07:00.004995,3189.0,3189.0,3187.0,3188.0,12336.0,0 2014-05-13 09:08:00.005002,3188.0,3188.0,3185.0,3186.0,20484.0,0 2014-05-13 09:09:00.004998,3186.0,3187.0,3184.0,3186.0,19234.0,0 dataframe = pd.read_csv('RB.SHF.csv', index_col=0, parse_dates=True)dataframe = pd.read_csv('RB.SHF.csv', index_col=0, parse_dates=True)
data0 = bt.feeds.PandasData(dataname=dataframe,fromdate=datetime.datetime(2014, 5, 13),todate=datetime.datetime(2014, 6, 20),timeframe=bt.TimeFrame.Minutes)
#timeframe=bt.TimeFrame.Minutes用来指明datafeed的timeframe,默认是days# Add the Data Feed to Cerebro,就像平常一样cerebro.adddata(data0)data2 = cerebro.resampledata(data0, timeframe=bt.TimeFrame.Days)#加入另外一个新的timeframe的datafeed的时候,就不能是adddata了,而是之前说的resamplingcerebro.run()cerebro.plot(style='bar')
timeframe=bt.TimeFrame.Minutes用来指明datafeed的timeframe,默认是days # Add the Data Feed to Cerebro,就像平常一样 cerebro.adddata(data0) data2 = cerebro.resampledata(data0, timeframe=bt.TimeFrame.Days)#加入另外一个新的timeframe的datafeed的时候,就不能是adddata了,而是之前说的resampling cerebro.run() cerebro.plot(style='bar')
最后,画出来的plot是这样的:

赞 (0)

