ML之NN:利用神经网络的BP算法解决XOR类(异或非)问题(BP solve XOR Problem)
相关推荐
-
教AI做件简单的事:从零开始构建首个神经网络
全文共2278字,预计学习时长6分钟 图源:Google 很长时间以来,我一直对构建神经网络跃跃欲试,现在终于有机会来研究它了.我想我并没有完全掌握神经网络背后的数学原理,所以先教人工智能做一些简单的 ...
-
TF之NN:基于Tensorflow利用神经网络算法对数据集(用一次函数随机生成100个数)训练预测斜率、截距(逼近已知一次函数)
TF之NN:基于Tensorflow利用神经网络算法对数据集(用一次函数随机生成100个数)训练预测斜率.截距(逼近已知一次函数) 输出结果 代码设计 import os os.environ['TF ...
-
降维讲解:使用python实现简单的神经网络(BP算法)
用pytorch跟tensorflow实现神经网络固然爽.但是想要深入学习神经网络,光学会调包是不够的,还是得亲自动手去实现一个神经网络,才能更好去理解. 一.问题介绍 传说中线性分类器无法解决的异或 ...
-
DL之BP:神经网络算法简介之BP算法简介(链式法则/计算图解释)、案例应用之详细攻略
DL之BP:神经网络算法简介之BP算法简介(链式法则/计算图解释).案例应用之详细攻略相关文章:DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神 ...
-
DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神经网络的工作原理
DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神经网络的工作原理 BP类神经网络理解 1.BP算法 1.信号正向传播FP 2.误差反向传播BP+ ...
-
ML之回归预测之BE:利用BE算法解决回归(实数值评分预测)问题—线性方法解决非线性问题
ML之回归预测之BE:利用BE算法解决回归(实数值评分预测)问题-线性方法解决非线性问题 输出结果 设计思路 代码实现 for row in xList: newRow = list(row) alc ...
-
ML之回归预测之Lasso:利用Lasso算法解决回归(实数值评分预测)问题—采用10折交叉验证(测试集error)来评估LassoCV模型
ML之回归预测之Lasso:利用Lasso算法解决回归(实数值评分预测)问题-采用10折交叉验证(测试集error)来评估LassoCV模型 输出结果 设计思路 核心代码 if t==1: X = n ...
-
ML之LoR&Bagging&RF:依次利用Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——模型融合
ML之LoR&Bagging&RF:依次利用Bagging.RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测--模型融合 输出结果 设计思路 核心代码 RF算 ...
-
ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能
ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集[13+1,506]进行回归预测(房价预测)来比较各模型性能 导读 通过利用13种机器学习算法,分别是LiR.kNN.SVR.D ...
-
ML之回归预测:利用两种机器学习算法(LiR,XGBoost(调优+重要性可视化+特征选择模型))对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测值VS真实值
ML之回归预测:利用两种机器学习算法(LiR,XGBoost(调优+重要性可视化+特征选择模型))对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测值VS真实值 输出结果 1.LiR ...
