ML之LiR:使用线性回归LiR回归模型在披萨数据集上拟合(train)、价格回归预测(test)
相关推荐
-
实战:使用 OpenCV 的自动驾驶汽车车道检测(附代码)
重磅干货,第一时间送达 一.边缘检测 我们将使用 Canny 进行边缘检测.如果你不确定这是什么,请查阅相关资料,对于后文的阅读会有帮助. def canyEdgeDetector(image): e ...
-
使用scikit-learn对数据进行预处理
数据的质量决定了模型的上限,在真实的数据分析中,输入的数据会存在缺失值,不同特征的取值范围差异过大等问题,所以首先需要对数据进行预处理. 预处理是数据挖掘的第一步,该步骤实际上包含了很多不同的操作手法 ...
-
基于正则化的回归:岭回归和套索回归
在多元线性回归中,多个变量之间可能存在多重共线性,所谓多重,就是一个变量与多个变量之间都存在线性相关.首先来看下多重共线性对回归模型的影响,假设一下回归模型 y = 2 * x1 + 3 * x2 + ...
-
ML之LiR&2PolyR:使用线性回归LiR、二次多项式回归2PolyR模型在披萨数据集上拟合(train)、价格回归预测(test)
ML之LiR&2PolyR:使用线性回归LiR.二次多项式回归2PolyR模型在披萨数据集上拟合(train).价格回归预测(test) 输出结果 设计思路 核心代码 poly2 = Poly ...
-
ML之LiR&2PolyR&4PolyR:使用线性回归LiR、二次多项式回归2PolyR、四次多项式回归4PolyR模型在披萨数据集上拟合(train)、价格回归预测(test)
ML之LiR&2PolyR&4PolyR:使用线性回归LiR.二次多项式回归2PolyR.四次多项式回归4PolyR模型在披萨数据集上拟合(train).价格回归预测(test) 输出 ...
-
ML之4PolyR:利用四次多项式回归4PolyR模型+两种正则化(Lasso/Ridge)在披萨数据集上拟合(train)、价格回归预测(test)
ML之4PolyR:利用四次多项式回归4PolyR模型+两种正则化(Lasso/Ridge)在披萨数据集上拟合(train).价格回归预测(test) 输出结果 设计思路 核心代码 lasso_pol ...
-
ML之LiR:利用LiR线性回归算法(自定义目标函数MSE和优化器GD)对Boston房价数据集(两特征+归一化)进行回归预测
ML之LiR:利用LiR线性回归算法(自定义目标函数MSE和优化器GD)对Boston房价数据集(两特征+归一化)进行回归预测 相关文章 ML之LiR:利用LiR线性回归算法(自定义目标函数MSE和优 ...
-
ML之LiR&SGDR:基于二种算法(LiR、SGDR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能
ML之LiR&SGDR:基于二种算法(LiR.SGDR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能 输出结果 Boston House Prices ...
-
ML之FE:基于LiR/Ridge/Lasso/ElasticNet/AvgModels/RF算法(GSCV) 利用某市房价数据集(特征工程处理)进行房价回归预测
ML之FE:基于LiR/Ridge/Lasso/ElasticNet/AvgModels/RF算法(GSCV) 利用某市房价数据集(特征工程处理)进行房价回归预测 输出结果 1.输出基本信息 bj_d ...
-
回归模型评估指标
回归模型的评估,核心是利用模型预测值与真实值之间的差值,常用的指标有以下几种 1. 平均绝对误差 Mean Absolute Error, 简称MAE, 公式如下 考虑到正负误差在求和时会出现抵消的情 ...
-
深入讨论机器学习 8 大回归模型的基本原理以及差异!
几乎每个机器学习从业者都知道回归,其中一些人可能认为这没什么大不了的,只是从参数之间的切 换罢了.本文将阐明每种回归算法的细节,以及确切的区别.包括 : OLS Weighted Least Squa ...
-
如何用几行代码运行 40 个回归模型
这篇文章教你如何使用 Lazy Predict 运行超过 40 个机器学习模型进行回归项目. 假设你需要执行一项回归机器学习项目.你已经分析了你的数据,进行了一些数据清洗,创建了一些虚拟变量,现在,是 ...
