ML之LiR&SGDR:基于二种算法(LiR、SGDR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能
相关推荐
-
腾讯数据科学家手把手教你做用户行为分析(案例:出行选择)
导读:生活中的选择行为无处不在,数据分析师面对的商业场景也存在大量的用户选择问题.系统.科学地研究用户选择问题,得到选择行为背后的客观规律并基于这些规律提出业务优化策略,这些能力对于数据分析师非常重要 ...
-
机器学习入门实战---波士顿房价预测
波士顿房价预测 波士顿房价数据集介绍 波士顿房价数据说明:此数据源于美国某经济学杂志上,分析研究波士顿房价( Boston HousePrice)的数据集.数据集中的每一行数据都是对波士顿周边或城镇房 ...
-
最新!基于深度学习的盲图像超分技术一览
作者丨happy 编辑丨极市平台 极市导读 本文系统综述了盲图像超分的近期进展,对现有方案按照退化建模.数据等进行了分类划分以帮助研究人员归纳判别现有方案. >>加入极市CV技术交流群,走 ...
-
ML之DT&RFR&ExtraTR&GBR:基于四种算法(DT、RFR、ExtraTR、GBR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能
ML之DT&RFR&ExtraTR&GBR:基于四种算法(DT.RFR.ExtraTR.GBR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自 ...
-
ML之SVM(三种):基于三种SVM(linearSVR、polySVR、RBFSVR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能
ML之SVM(三种):基于三种SVM(linearSVR.polySVR.RBFSVR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能 输出结果 Boston H ...
-
ML之kNN(两种):基于两种kNN(平均回归、加权回归)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能
ML之kNN(两种):基于两种kNN(平均回归.加权回归)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能 输出结果 Boston House Prices dat ...
-
ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能
ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集[13+1,506]进行回归预测(房价预测)来比较各模型性能 导读 通过利用13种机器学习算法,分别是LiR.kNN.SVR.D ...
-
TF之LSTM:利用LSTM算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)
TF之LSTM:利用LSTM算法对Boston(波士顿房价)数据集[13+1,506]进行回归预测(房价预测) 相关文章 DL之LSTM:利用LSTM算法对Boston(波士顿房价)数据集[13+1, ...
-
ML之RF&DT:利用RF(RFR)、DT(DTR)两种算法实现对boston(波士顿房价)数据集进行训练并预测
ML之RF&DT:利用RF(RFR).DT(DTR)两种算法实现对boston(波士顿房价)数据集进行训练并预测 输出结果 1.两种算法的预测结果 2.回归树的可视化 实现代码 boston_ ...
-
ML之LiR&DNN&EL:基于skflow的LiR、DNN、sklearn的RF对Boston(波士顿房价)数据集进行回归预测(房价)
ML之LiR&DNN&EL:基于skflow的LiR.DNN.sklearn的RF对Boston(波士顿房价)数据集进行回归预测(房价) 输出结果 设计思路 核心代码 tf_lr = ...
-
ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集【特征列分段→独热编码】进行回归预测(房价预测)+预测新数据得分
ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集[特征列分段→独热编码]进行回归预测(房价预测)+预测新数据得分 导读 对Boston(波士顿房价)数据集进行特征工程,分 ...
-
EL之DT&RF&GBT:基于三种算法(DT、RF、GBT)对泰坦尼克号乘客数据集进行二分类(是否获救)预测并对比各自性能
EL之DT&RF&GBT:基于三种算法(DT.RF.GBT)对泰坦尼克号乘客数据集进行二分类(是否获救)预测并对比各自性能 输出结果 设计思路 核心代码 vec = DictVecto ...
