ML之DT&RFR&ExtraTR&GBR:基于四种算法(DT、RFR、ExtraTR、GBR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能
相关推荐
-
课件:剂量及置换液配置.pptx 文档全文预览
CRRT剂量及置换液配置空心纤维膜血液入口横截面透析液和滤出液出口肾小球透析液入口血液出口血液滤过器 VS 肾单元 CVVH原理 肾小球滤过率(GFR)单位时间内肾小球滤过的血浆量正常成人约120ml ...
-
DT830B
,.
-
重症技术-CRRT治疗的规范化流程
连续性肾替代治疗(continous renal replacement theraphy,CRRT),是指每日持续 24 h 或接近 24 h的一种长时间.连续的体外血液净化疗法以替代受损的肾功能. ...
-
ML之LiR&SGDR:基于二种算法(LiR、SGDR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能
ML之LiR&SGDR:基于二种算法(LiR.SGDR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能 输出结果 Boston House Prices ...
-
ML之SVM(三种):基于三种SVM(linearSVR、polySVR、RBFSVR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能
ML之SVM(三种):基于三种SVM(linearSVR.polySVR.RBFSVR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能 输出结果 Boston H ...
-
ML之kNN(两种):基于两种kNN(平均回归、加权回归)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能
ML之kNN(两种):基于两种kNN(平均回归.加权回归)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能 输出结果 Boston House Prices dat ...
-
EL之DT&RF&GBT:基于三种算法(DT、RF、GBT)对泰坦尼克号乘客数据集进行二分类(是否获救)预测并对比各自性能
EL之DT&RF&GBT:基于三种算法(DT.RF.GBT)对泰坦尼克号乘客数据集进行二分类(是否获救)预测并对比各自性能 输出结果 设计思路 核心代码 vec = DictVecto ...
-
ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能
ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集[13+1,506]进行回归预测(房价预测)来比较各模型性能 导读 通过利用13种机器学习算法,分别是LiR.kNN.SVR.D ...
-
ML之RF&DT:利用RF(RFR)、DT(DTR)两种算法实现对boston(波士顿房价)数据集进行训练并预测
ML之RF&DT:利用RF(RFR).DT(DTR)两种算法实现对boston(波士顿房价)数据集进行训练并预测 输出结果 1.两种算法的预测结果 2.回归树的可视化 实现代码 boston_ ...
-
ML之LiR&DNN&EL:基于skflow的LiR、DNN、sklearn的RF对Boston(波士顿房价)数据集进行回归预测(房价)
ML之LiR&DNN&EL:基于skflow的LiR.DNN.sklearn的RF对Boston(波士顿房价)数据集进行回归预测(房价) 输出结果 设计思路 核心代码 tf_lr = ...
-
ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集【特征列分段→独热编码】进行回归预测(房价预测)+预测新数据得分
ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集[特征列分段→独热编码]进行回归预测(房价预测)+预测新数据得分 导读 对Boston(波士顿房价)数据集进行特征工程,分 ...
-
ML之LiR&2PolyR&4PolyR:使用线性回归LiR、二次多项式回归2PolyR、四次多项式回归4PolyR模型在披萨数据集上拟合(train)、价格回归预测(test)
ML之LiR&2PolyR&4PolyR:使用线性回归LiR.二次多项式回归2PolyR.四次多项式回归4PolyR模型在披萨数据集上拟合(train).价格回归预测(test) 输出 ...