EL之Bagging:利用Bagging算法实现回归预测(实数值评分预测)问题
相关推荐
-
第114天: 三木板模型算法项目实战
机器学习 本篇同样是机器学习,虽然没有用到python中已有的算法和函数,但借鉴了机器学习中的思路. 这篇机器学习建模的思路比较新颖,模型评估也比较独特.旨在引导广大读者借鉴,举一反三. 只是通过足球 ...
-
万字干货|一文助你了解机器学习
本文将通过大量案例和通俗易懂的"人话",讲述机器学习建模逻辑和使用场景,让非数据科学专业的职场人都可以快速了解机器学习是什么,能做什么,如何用! 从AlphaGo战胜李世石开始,A ...
-
ML之回归预测之BE:利用BE算法解决回归(实数值评分预测)问题—线性方法解决非线性问题
ML之回归预测之BE:利用BE算法解决回归(实数值评分预测)问题-线性方法解决非线性问题 输出结果 设计思路 代码实现 for row in xList: newRow = list(row) alc ...
-
ML之回归预测之Lasso:利用Lasso算法解决回归(实数值评分预测)问题—采用10折交叉验证(测试集error)来评估LassoCV模型
ML之回归预测之Lasso:利用Lasso算法解决回归(实数值评分预测)问题-采用10折交叉验证(测试集error)来评估LassoCV模型 输出结果 设计思路 核心代码 if t==1: X = n ...
-
EL之RF(RFR):利用RandomForestRegressor对回归问题(实数值评分预测)建模(调2参)
EL之RF(RFR):利用RandomForestRegressor对回归问题(实数值评分预测)建模(调2参) 输出结果 设计思路 核心代码 mseOos = [] nTreeList = range ...
-
EL之GB(GBR):利用GBR对回归问题(实数值评分预测)建模
EL之GB(GBR):利用GBR对回归问题(实数值评分预测)建模 输出结果 设计思路 核心代码 wineGBMModel = ensemble.GradientBoostingRegressor(n_ ...
-
EL之RF(随机性的Bagging+DTR):利用随机选择属性的bagging方法解决回归(对多变量的数据集+实数值评分预测)问题
EL之RF(随机性的Bagging+DTR):利用随机选择属性的bagging方法解决回归(对多变量的数据集+实数值评分预测)问题 输出结果 设计思路 核心代码 for iTrees in range ...
-
EL之Bagging(DTR):利用Bagging对回归问题(实数值评分预测)建模(调2参)
EL之Bagging(DTR):利用Bagging对回归问题(实数值评分预测)建模(调2参) 输出结果 设计思路 核心代码 bagFract = 1.0 #---------------------- ...
-
ML之回归预测之Lasso:利用Lasso算法对红酒品质wine数据集实现红酒口感评分预测(实数值评分预测)
ML之回归预测之Lasso:利用Lasso算法对红酒品质wine数据集实现红酒口感评分预测(实数值评分预测) 输出结果 设计思路 核心代码 t=3 if t==1: X = numpy.array(x ...
-
ML之回归预测:利用FSR/RiR/BasisExpand/ Lasso/DT/RF/GB算法对红酒品质wine数据集实现红酒口感评分预测(实数值评分预测)
ML之回归预测:利用FSR/RiR/BasisExpand/ Lasso/DT/RF/GB算法对红酒品质wine数据集实现红酒口感评分预测(实数值评分预测) 输出结果 Index(['fixed ac ...
-
ML之PLiR之LARS:利用LARS算法求解ElasticNet回归类型问题(实数值评分预测)
ML之PLiR之LARS:利用LARS算法求解ElasticNet回归类型问题(实数值评分预测) 设计思路 更新-- 输出结果 ['"alcohol"', '"volat ...