MySQL语句性能优化之Sql错误用法

本文主要总结了慢查询优化的过程中常用的以及不合理的操作,适合所有的运维及开发人员。

1、LIMIT 语句

分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。

SELECT *

FROM   operation

WHERE  type = 'SQLStats' 

       AND name = 'SlowLog' ORDER  BY create_time

LIMIT  1000, 10;1234567891011复制代码类型:[javascript]

好吧,可能90%以上的 DBA 解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。

在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下:

SELECT   *

FROM     operation

WHERE    type = 'SQLStats' AND      name = 'SlowLog' AND      create_time > '2017-03-16 14:00:00' ORDER BY create_time limit 10;123456789101112复制代码类型:[javascript]

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。

2、隐式转换

SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:

mysql> explain extended SELECT *

     > FROM my_balance b

     > WHERE b.bpn = 14000000123 

     > AND b.isverified IS NULL ;

mysql> show warnings;

| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'1234567891011复制代码类型:[javascript]

其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。

3、关联更新、删除

虽然 MySQL5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。

比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。

UPDATE operation o

SET    status = 'applying' WHERE  o.id IN (SELECT id 

                FROM   (SELECT o.id,

                               o.status

                        FROM   operation o

                        WHERE  o.group = 123 

                               AND o.status NOT IN ( 'done' )

                        ORDER  BY o.parent,

                                  o.id

                        LIMIT  1) t);123456789101112131415161718192021复制代码类型:[javascript]

执行计划:

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

| 1  | PRIMARY | o | index |               | PRIMARY | 8       | | 24   | Using where; Using temporary |

| 2 | DEPENDENT SUBQUERY | |       | |         | |       | | Impossible WHERE noticed after reading const tables |

| 3  | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8       | const | 1    | Using where; Using filesort |

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+1234567891011121314复制代码类型:[javascript]

重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒。

UPDATE operation o

       JOIN  (SELECT o.id,

                            o.status

                     FROM   operation o

                     WHERE  o.group = 123 

                            AND o.status NOT IN ( 'done' )

                     ORDER  BY o.parent,

                               o.id

                     LIMIT  1) t

         ON o.id = t.id

SET    status = 'applying'123456789101112131415161718192021复制代码类型:[javascript]

执行计划简化为:

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

| 1  | PRIMARY |       | |               | |         | |      | Impossible WHERE noticed after reading const tables |

| 2 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+123456789101112复制代码类型:[javascript]

4、混合排序

MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

SELECT *

FROM   my_order o

       INNER JOIN my_appraise a ON a.orderid = o.id

ORDER  BY a.is_reply ASC,

          a.appraise_time DESC 

LIMIT  0, 201234567891011复制代码类型:[javascript]

执行计划显示为全表扫描:

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+

| 1 | SIMPLE | a | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort |

|  1 | SIMPLE | o | eq_ref | PRIMARY | PRIMARY | 122     | a.orderid |       1 | NULL |

+----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+123456789101112复制代码类型:[javascript]

由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

SELECT *

FROM   ((SELECT *

         FROM   my_order o

                INNER JOIN my_appraise a

                        ON a.orderid = o.id

                           AND is_reply = 0 

         ORDER  BY appraise_time DESC 

         LIMIT  0, 20)

        UNION ALL

        (SELECT *

         FROM   my_order o

                INNER JOIN my_appraise a

                        ON a.orderid = o.id

                           AND is_reply = 1 

         ORDER  BY appraise_time DESC 

         LIMIT  0, 20)) t

ORDER  BY  is_reply ASC,

          appraisetime DESC 

LIMIT  20;1234567891011121314151617181920212223242526272829303132333435363738复制代码类型:[javascript]

5、EXISTS语句

MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句:

SELECT *

FROM   my_neighbor n

       LEFT JOIN my_neighbor_apply sra

              ON n.id = sra.neighbor_id

                 AND sra.user_id = 'xxx' WHERE  n.topic_status < 4 

       AND EXISTS(SELECT 1 

                  FROM   message_info m

                  WHERE  n.id = m.neighbor_id

                         AND m.inuser = 'xxx')

       AND n.topic_type <> 51234567891011121314151617181920212223复制代码类型:[javascript]

执行计划为:

+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

|  1 | PRIMARY | n | ALL |  | NULL | NULL | NULL | 1086041 | Using where |

| 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where |

|  2 | DEPENDENT SUBQUERY | m | ref |  | idx_message_info | 122     | const |       1 | Using index condition; Using where |

+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+1234567891011121314复制代码类型:[javascript]

去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

SELECT *

FROM   my_neighbor n

       INNER JOIN message_info m

               ON n.id = m.neighbor_id

                  AND m.inuser = 'xxx' 

       LEFT JOIN my_neighbor_apply sra

              ON n.id = sra.neighbor_id

                 AND sra.user_id = 'xxx' WHERE  n.topic_status < 4 

       AND n.topic_type <> 512345678910111213141516171819复制代码类型:[javascript]

新的执行计划:

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

|  1 | SIMPLE | m | ref | | idx_message_info | 122     | const |    1 | Using index condition |

| 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where |

|  1 | SIMPLE | sra | ref | | idx_user_id | 123     | const |    1 | Using where |

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+12345678910111213复制代码类型:[javascript]

6、条件下推

外部查询条件不能够下推到复杂的视图或子查询的情况有:

聚合子查询;

含有 LIMIT 的子查询;

UNION 或 UNION ALL 子查询;

输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

SELECT *

FROM   (SELECT target,

               Count(*)

        FROM   operation

        GROUP  BY target) t

WHERE  target = 'rm-xxxx'+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

|  1 | PRIMARY | <derived2> | ref | <auto_key0> | <auto_key0> | 514     | const |    2 | Using where |

| 2 | DERIVED | operation | index | idx_4 | idx_4 | 519 | NULL | 20 | Using index |

+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+1234567891011121314151617181920212223复制代码类型:[javascript]

确定从语义上查询条件可以直接下推后,重写如下:

SELECT target,

       Count(*)

FROM   operation

WHERE  target = 'rm-xxxx' GROUP  BY target123456789复制代码类型:[javascript]

执行计划变为:

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+123456789复制代码类型:[javascript]

7、提前缩小范围

先上初始 SQL 语句:

SELECT *

FROM   my_order o

       LEFT JOIN my_userinfo u

              ON o.uid = u.uid

       LEFT JOIN my_productinfo p

              ON o.pid = p.pid

WHERE  ( o.display = 0 )

       AND ( o.ostaus = 1 )

ORDER  BY o.selltime DESC 

LIMIT  0, 1512345678910111213141516171819复制代码类型:[javascript]

该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

|  1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort |

| 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |

|  1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL |      6 | Using where; Using join buffer (Block Nested Loop) |

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+1234567891011121314复制代码类型:[javascript]

由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。

SELECT *

FROM (

SELECT *

FROM   my_order o

WHERE  ( o.display = 0 )

       AND ( o.ostaus = 1 )

ORDER  BY o.selltime DESC 

LIMIT  0, 15) o

     LEFT JOIN my_userinfo u

              ON o.uid = u.uid

     LEFT JOIN my_productinfo p

              ON o.pid = p.pid

ORDER BY  o.selltime DESC

limit 0, 15123456789101112131415161718192021222324252627282930复制代码类型:[javascript]

再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

|  1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL |     15 | Using temporary; Using filesort |

| 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |

|  1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL |      6 | Using where; Using join buffer (Block Nested Loop) |

| 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where |

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+12345678910111213141516复制代码类型:[javascript]

8、中间结果集下推

再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

SELECT    a.*,

          c.allocated

FROM      (

              SELECT   resourceid

              FROM     my_distribute d

                   WHERE    isdelete = 0 

                   AND      cusmanagercode = '1234567' 

                   ORDER BY salecode limit 20) a

LEFT JOIN 

          (

              SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated

              FROM     my_resources

                   GROUP BY resourcesid) c

ON        a.resourceid = c.resourcesid12345678910111213141516171819202122232425262728复制代码类型:[javascript]

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

SELECT    a.*,

          c.allocated

FROM      (

                   SELECT   resourceid

                   FROM     my_distribute d

                   WHERE    isdelete = 0 

                   AND      cusmanagercode = '1234567' 

                   ORDER BY salecode limit 20) a

LEFT JOIN 

          (

                   SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated

                   FROM     my_resources r,

                            (

                                     SELECT   resourceid

                                     FROM     my_distribute d

                                     WHERE    isdelete = 0 

                                     AND      cusmanagercode = '1234567' 

                                     ORDER BY salecode limit 20) a

                   WHERE    r.resourcesid = a.resourcesid

                   GROUP BY resourcesid) c

ON        a.resourceid = c.resourcesid1234567891011121314151617181920212223242526272829303132333435363738394041复制代码类型:[javascript]

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写:

WITH a AS

(

         SELECT   resourceid

         FROM     my_distribute d

         WHERE    isdelete = 0 

         AND      cusmanagercode = '1234567' 

         ORDER BY salecode limit 20)

SELECT    a.*,

          c.allocated

FROM      a

LEFT JOIN 

          (

                   SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated

                   FROM     my_resources r,

                            a

                   WHERE    r.resourcesid = a.resourcesid

                   GROUP BY resourcesid) c

ON        a.resourceid = c.resourcesid1234567891011121314151617181920212223242526272829303132333435复制代码类型:[javascript]
(0)

相关推荐

  • MySQL数据库的基本使用

    Mysql 数据库 2.1  安装mysq 下载解压包  解压到某个目录下 添加到环境变量  (将bin所在的完整路径copy到系统的path中)_ 作为服务器 让其自启动mysql服务器 (mysq ...

  • 5、表管理语句

    查看表 > show tables;#查看当前库中所有表的具体属性信息 > show table status\G;#查看当前库某张表的状态> show table status l ...

  • mysql在建表语句中添加索引

    普通索引创建 创建普通索引,即不添加 UNIQUE.FULLTEXT 等任何参数. [例]创建表名为 score 的数据表,并在该表的 id 字段上建立索引,SQL 语句如下: CREATE tabl ...

  • 52 条 SQL 语句性能优化策略,建议收藏

    作者:https://www.cnblogs.com/SimpleWu/ 1, 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2,应尽量避免 ...

  • 52条SQL语句性能优化策略,建议收藏

    来源:cnblogs.com/SimpleWu/p/9929043.html 本文会提到 52 条 SQL 语句性能优化策略. 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 WHERE 及 O ...

  • 52 条 SQL 语句性能优化策略

    52 条 SQL 语句性能优化策略,建议收藏! 开发者全社区 5天前 作者:SimpleWu 来源:www.cnblogs.com/SimpleWu/p/9929043.html 本文会提到52条SQ ...

  • 涨姿势的52条SQL语句性能优化

    转自:cnblogs.com/SimpleWu/p/9929043.html 本文会提到 52 条 SQL 语句性能优化策略. 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 WHERE 及 O ...

  • 8 种最坑的 SQL 错误用法,你有没有踩过坑?

    原文作者:程序员追风 01.LIMIT语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_ti ...

  • 8种常见SQL错误用法

    作者:db匠 原文链接:https://developer.aliyun.com/article/72501 1.LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如对于 ...

  • SqlServer性能优化,查看CPU、内存占用大的会话及SQL语句

    SqlServer性能优化,查看CPU、内存占用大的会话及SQL语句

  • Flink SQL 性能优化:multiple input 详解

    简介: 在 Flink 1.12 中,针对目前 operator chaining 无法覆盖的场景,推出了 multiple input operator 与 source chaining 优化.该 ...

  • 性能优化:核心库CPU使用率100%,SQL优化后执行效率提升10000多倍

    墨墨导读:某客户一系统早上业务高峰时段RAC数据库两节点CPU使用率接近100%,导致业务响应缓慢,通过分析原因定位SQL完成优化改写后降低CPU的使用率,业务恢复正常. 问题现象 客户一系统在202 ...