如何选择机器学习模型?
相关推荐
-
【深读】如何用“驯服长尾”的方式改良AI经济?
导读 AI是最近很火的技术.似乎各行各业都可以应用AI.这么看来,做AI不仅很有前途,而且很有钱途吧?错了,人工智能公司的毛利率往往较低,很难规模化,而且未必总能具备牢固的护城河.那么怎么才能改善AI ...
-
深度学习?不一定非得搞“黑箱”
杜克大学的科学家们在<自然:机器智能>提出了"概念白化(concept whitening)"技术,其将可解释性引入深度学习模型,而不再由模型自主在数百万训练得出的参数 ...
-
机器学习与神经影像:评估它在精神病学中的应用
摘要 精神疾病是复杂的,涉及不同的症状学和神经生物学,很少涉及单一的.孤立的大脑结构的破坏.为了更好地描述和理解精神疾病的复杂性,研究人员越来越多地将多元模式分类方法应用于神经成像数据,特别是监督机器 ...
-
朱松纯教授:可解释性是人工智能获得人类信任的关键
转自 通院BIGAI 6月6日,北京通用人工智能研究院院长朱松纯教授受邀参加由中国人工智能学会主办的CICAI国际人工智能会议,并带来了<可解释性人工智能:如何让机器获得人类有依据的信任> ...
-
难以捉摸?机器学习模型的可解释性初探
引子:在机器学习中,可解释性的概念既重要又难以捉摸.我们能相信模型吗?它在部署过程中会起作用吗?关于这个世界,模型还能告诉我们什么?模型不仅应该是好的,而且应该是可以解释的,然而,可解释性似乎没有具体 ...
-
机器学习模型评估教程!
文章译者:追风者 内容来源:Datawhale 如何在投入生产前评估机器学习模型性能? 想象一下,你训练了一个机器学习模型.也许,可以从中选几个候选方案. 你在测试集上运行它,得到了一些质量评估.模型 ...
-
为什么大型机器学习模型必须缩小 ?
更大的规模不一定更适合机器学习.但是,随着研究人员相互竞争追求最先进的基准,深度学习模型和训练它们的数据集不断扩展.不管它们如何突破,更大的模型都会对预算和环境产生严重的影响.比如 GPT-3,一个在 ...
-
训练机器学习模型时应避免的 6 个错误
对人工智能模型进行训练的同时,还需要进行多阶段任务,以充分利用训练数据,获得满意的结果.为了保证人工智能模型的性能,本文列出了六个需要避免的常见错误. 创建人工智能或机器学习模型并非一项简单的任务.为 ...
-
训练机器学习模型时比较常见的错误有哪些?开课吧广场
创建人工智能或机器学习模型并非一项简单的任务.为了让模型能在不同环境下正常使用,除了要有大量的知识.技能和丰富的经验,你还要有高质量的计算机视觉训练数据,特别是基于视觉感知的人工智能模型. 训练机器学 ...
-
手把手教你用Python构建logit、负二项回归、决策树与随机森林机器学习模型
本次更新的主要内容为利用Python中的statsmodels库构建logit与负二项回归模型,以及利用sklearn库构建决策树以及随机森林模型.内容源自同济大学研究生课程<高级数理统计> ...
-
MLOps 正在改变机器学习模型的开发方式
提供机器学习解决方案远不止仅提供模型那么简单.机器学习运维 (MLOps) 的基础理论可以帮助数据科学团队更快.更有信心地交付模型,其涉及版本控制.测试和流水线这三个关键概念. MLOps(https ...
-
比较三种机器学习模型(随机森林,支持向量机,逻辑回归)的分类效果
原文题目:The Pan-Cancer analysis of pseudogene expression reveals biologically and clinically relevant t ...
-
全面比较和概述运用机器学习模型进行时间序列预测的方法优劣!
邮箱:econometrics666@126.com 所有计量经济圈方法论丛的code程序, 宏微观数据库和各种软件都放在社群里.欢迎到计量经济圈社群交流访问. 背景知识:1.机器学习之KNN分类算法 ...