推荐算法(8)评测指标
相关推荐
-
协同过滤
协同过滤 什么是协同过滤 协同过滤推荐(Collaborative Filtering recommendation)是在信息过滤和信息系 统中正迅速成为一项很受欢迎的技术.与传统的基于内容过滤直接分 ...
-
栈
栈(stack),有些地方称为堆栈,是一种容器,可存入数据元素.访问元素.删除元素,它的特点在于只能允许在容器的一端(称为栈顶端指标,英语:top)进行加入数据(英语:push)和输出数据(英语:po ...
-
年轻人开始“反推荐算法”:算法不讲武德!
深燃(shenrancaijing)原创 作者 | 王敏 编辑 | 向小园 "算法不讲武德!"越来越多年轻人发觉,生活正在被算法控制. 从事互联网运营的卢锋,想要搜索某个科技产品的 ...
-
推荐算法(6) 实例
一.推荐系统外围构架 从用户日志经过推荐系统得到推荐列表,返回给UI界面: 用户在UI界面,反馈,生成日志,最后储存起来. 界面设置: 1.展示物品 2.物品有推荐理由 3.提供按钮反馈 数据收集和储 ...
-
推荐算法(5)利用社交网络数据
影响用户相信某个推荐结果的因素,90%的用户相信朋友对他们的推荐.基于社交网络的推荐可以很好的模拟现实社会.所以利用社交网络数据进行推荐可以增加用户对系统的信任度.另外利用用户在社交网络的数据可以解决 ...
-
推荐算法(4)利用上下文信息
上下文信息包括: 时间的上下文.地点的上下文.心情的上下文- 一.时间的上下文 1.理论 1)时间上对用户的影响: 1.用户自己的兴趣变化(随年龄,时间的变化,兴趣也在变化) 2.物品有自己的生命周期 ...
-
推荐算法(2):基于内容的推荐
思路: 根据用户过去喜欢的产品(本文统称为 item),为用户推荐和他过去喜欢的产品相似的产品 流程: 内容表征 Item Representation:为每个item抽取出一些特征(也就是item的 ...
-
推荐算法(1):协同过滤总结
一.协同过滤方法: (1)基于内容/基于领域的协同过滤 ICF 计算items之间的相似度,推荐与A的已知item最相关的item 步骤: 1.输入item-user矩阵 2.求item-item相似 ...
-
推荐算法(3):利用用户标签数据
第一种CB 第二种 UCF 第三种 用户标签行为数据.就是人为的添加的标签,比如用户对看的一部电影打标签,写博客时作者给博客打的标签.标签分两种:一种是作者或者专家给商品打标签,一种是普通用户对商品打 ...
-
图解抖音推荐算法
抖音推荐算法究竟如何是做抖音短视频运营的同学非常关心的问题,抖音官方并没有披露正式的算法,但凭借着民间的智慧和官方披露的部分信息中,网友已经总结出抖音推荐算法的秘密.这里整理资料如下: 首先看短视频发 ...
-
从零到万的粉丝:抖音的推荐算法到底是怎样的?
为什么现在各家都要做抖音.原因很简单. 在抖音,哪怕你没有任何名气,没有一个粉丝,完全零流量,也可以在很短的时间内打造出一个100万精准粉丝的大号. 只要上传了视频,抖音平台都会自动分配精准流量,为产 ...