ML之FE:基于load_mock_customer数据集(模拟客户,单个DataFrame)利用featuretools工具实现自动特征生成/特征衍生
相关推荐
-
一键数据分析&自动化特征工程!
创造新的特征是一件十分困难的事情,需要丰富的专业知识和大量的时间.机器学习应用的本质基本上就是特征工程.--Andrew Ng 业内常说数据决定了模型效果上限,而机器学习算法是通过数据特征做出预测的, ...
-
深度特征合成:自动生成机器学习中的特征
英文原文标题:Automated Feature Engineering in Python How to automatically create machine learning features ...
-
ML之FE:基于load_mock_customer数据集(模拟客户)利用featuretools工具实现自动特征生成/特征衍生
ML之FE:基于load_mock_customer数据集(模拟客户)利用featuretools工具实现自动特征生成/特征衍生 推荐文章 ML之FE:基于load_mock_customer数据集( ...
-
ML之FE:基于单个csv文件数据集(自动切分为两个dataframe表)利用featuretools工具实现自动特征生成/特征衍生
ML之FE:基于单个csv文件数据集(自动切分为两个dataframe表)利用featuretools工具实现自动特征生成/特征衍生 推荐文章 Py之featuretools:featuretools ...
-
ML之FE:基于自定义数据集(银行客户信息贷款和赔偿)对比实现特征衍生(手动设计新特征、利用featuretools工具实现自动特征生成)
ML之FE:基于自定义数据集(银行客户信息贷款和赔偿)对比实现特征衍生(手动设计新特征.利用featuretools工具实现自动特征生成)相关文章ML之FE:基于自定义数据集(银行客户信息贷款和赔偿) ...
-
ML之FE:基于BigMartSales数据集利用Featuretools工具实现自动特征工程之详细攻略daiding
ML之FE:基于BigMartSales数据集利用Featuretools工具实现自动特征工程之详细攻略daiding 基于BigMartSales数据集利用Featuretools工具实现自动特征工 ...
-
ML之FE:基于BigMartSales数据集利用Featuretools工具(1个dataframe表结构切为2个Entity表结构)实现自动特征工程之详细攻略
ML之FE:基于BigMartSales数据集利用Featuretools工具(1个dataframe表结构切为2个Entity表结构)实现自动特征工程之详细攻略 相关文章 ML之FE:基于BigMa ...
-
ML之FE:基于FE特征工程对RentListingInquries数据集进行预处理并导出为三种格式文件(csv格式/txt格式/libsvm稀疏txt格式)
ML之FE:基于FE特征工程对RentListingInquries数据集进行预处理并导出为三种格式文件(csv格式/txt格式/libsvm稀疏txt格式)输出结果1.1.RentListingIn ...
-
ML之FE:基于LiR/Ridge/Lasso/ElasticNet/AvgModels/RF算法(GSCV) 利用某市房价数据集(特征工程处理)进行房价回归预测
ML之FE:基于LiR/Ridge/Lasso/ElasticNet/AvgModels/RF算法(GSCV) 利用某市房价数据集(特征工程处理)进行房价回归预测 输出结果 1.输出基本信息 bj_d ...
-
ML之FE:数据处理—特征工程之数据集划分成训练集、验证集、测试集三部分简介、代码实现、案例应用之详细攻略
ML之FE:数据处理-特征工程之数据集划分成训练集.验证集.测试集三部分简介.代码实现.案例应用之详细攻略 数据集划分成训练.验证.测试三种数据的简介 分割训练数据前,先打乱了输入数据和教师标签.因为 ...
-
ML之K-means:基于DIY数据集利用K-means算法聚类(测试9种不同聚类中心的模型性能)
ML之K-means:基于DIY数据集利用K-means算法聚类(测试9种不同聚类中心的模型性能) 输出结果 设计思路 1.使用均匀分布函数随机三个簇,每个簇周围10个数据样本. 2.绘制30个数据样 ...