三维点云分割综述(下)

(0)

相关推荐

  • 自动驾驶传感器之摄像头(十一)车载摄像头图像识别主流算法

    作者 / 阿宝 编辑 / 阿宝 出品 / 阿宝1990 前面章节阐述了摄像头内部的工作原理,一系列的图像效果的处理,包括白平衡.畸变校正.色彩还原等一系列图像的处理,如果我们是做一台手机基本上到这里就 ...

  • 自动驾驶之点云与图像融合综述

    导读:这几天偷懒,也确实没有时间来进行更新(更新频率越来越低了),这里接着一篇去年的综述来开始中断的学习之旅<Deep Learning for Image and Point Cloud Fu ...

  • 【衡道丨AI 】首个针对不同染色病理图像域适应的深度学习模型

    目前,深度学习技术在病理图像分析上的应用日渐深入,但是大多数的深度学习模型仅能针对训练集处于同一分布(域)的数据,而对于训练集处于不同分布的数据的泛化能力较差.这样的「域偏移」(domain shif ...

  • NVIDIA ECCV18论文:超像素采样网络助力语义分割与光流估计(代码将开源)

    计算机视觉中超像素指具有相似纹理.颜色.亮度等特征的相邻像素构成的具有一定视觉意义的不规则像素块.它利用像素之间特征的相似性将像素分组,用少量的超像素代替大量的像素来表达图片特征,可以大幅度降低图像后 ...

  • 3D深度学习简介

    重磅干货,第一时间送达 在过去的几年里,像微软Kinect或Asus Xtion传感器这样,既能提供彩色图像又能提供密集深度图像的新型相机系统变得唾手可得.人们对此类系统的期望很高,它们将推动机器人技 ...

  • 深度神经网络的图像语义分割研究综述

    摘要 随着深度学习的迅速发展并广泛应用到语义分割领域,语义分割效果得到了显著的提 升.本文主要对基于深度神经网络的图像语义分割方法和研究现状进行了详细的综述.根据 网络训练方式的不同,将现有的方法分为 ...

  • 从传统到深度学习:浅谈点云分割中的图结构

    随着3D扫描技术的进步,如何将点云的前景和背景正确分离成为点云处理的一个具有挑战性的问题.具体来说,就是给定一个对象位置的估计,目标是识别属于该对象的那些点,并将它们与背景点分开.除了将前景与背景分离 ...

  • 消除Aliasing!加州大学&英伟达提出深度学习下采样新思路:自适应低通滤波器层

    极市导读 Aliasing(锯齿)是采样过程中常见现象,本文为这一问题的解决提出了有效新思路:内容自适应低通滤波层,并提出一种用于评价语义/实例分割的平移一致性的新度量准则.作者在分类.分割等多种任务 ...

  • 用于RGB-D语义分割的全局-局部传播网络

    点击上方"深度学习爱好者",选择加"星标"或"置顶" 重磅干货,第一时间送达 小白导读 论文是学术研究的精华和未来发展的明灯.小白决心每天为 ...

  • 基于自监督深度估计的领域自适应语义分割

    重磅干货,第一时间送达 小黑导读 论文是学术研究的精华和未来发展的明灯.小黑决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容.个人能力有限,理解难免出现偏差,建议对文章 ...