TF之LoR:基于tensorflow利用逻辑回归算LoR法实现手写数字图片识别提高准确率
相关推荐
-
使用tensorflow创建一个简单的神经网络
本文是对tensorflow官方入门教程的学习和翻译,展示了创建一个基础的神经网络模型来解决图像分类问题的过程.具体步骤如下 1. 加载数据 tensorflow集成了keras这个框架,提供了Fa ...
-
DL之RBM:基于RBM实现手写数字图片识别提高准确率
DL之RBM:基于RBM实现手写数字图片识别提高准确率 输出结果 设计代码 import numpy as np import matplotlib.pyplot as plt from sklear ...
-
TF:利用是Softmax回归+GD算法实现MNIST手写数字图片识别(10000张图片测试得到的准确率为92%)
TF:利用是Softmax回归+GD算法实现MNIST手写数字图片识别(10000张图片测试得到的准确率为92%) 设计思路 全部代码 #TF:利用是Softmax回归+GD算法实现手写数字识别(10 ...
-
DL之NN:利用(本地数据集50000张数据集)调用自定义神经网络network.py实现手写数字图片识别94%准确率
DL之NN:利用(本地数据集50000张数据集)调用自定义神经网络network.py实现手写数字图片识别94%准确率 输出结果 更新-- 代码设计 import mnist_loader impor ...
-
TF之LiR:基于tensorflow实现手写数字图片识别准确率
TF之LiR:基于tensorflow实现手写数字图片识别准确率 输出结果 Extracting MNIST_data\train-images-idx3-ubyte.gz Please use tf ...
-
TF之CNN:利用sklearn(自带手写数字图片识别数据集)使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线
TF之CNN:利用sklearn(自带手写数字图片识别数据集)使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线 输出结果 设计代码 import tenso ...
-
TF之DNN:利用DNN【784→500→10】对MNIST手写数字图片识别数据集(TF自带函数下载)预测(98%)+案例理解DNN过程
TF之DNN:利用DNN[784→500→10]对MNIST手写数字图片识别数据集(TF自带函数下载)预测(98%)+案例理解DNN过程 输出结果 案例理解DNN过程思路 1.一张图像数组形状的变化: ...
-
TF:基于CNN(2+1)实现MNIST手写数字图片识别准确率提高到99%
TF:基于CNN(2+1)实现MNIST手写数字图片识别准确率提高到99% 导读 与Softmax回归模型相比,使用两层卷积的神经网络模型借助了卷积的威力,准确率高非常大的提升. 输出结果 Extra ...
-
TF之NN:利用DNN算法(SGD+softmax+cross_entropy)对mnist手写数字图片识别训练集(TF自带函数下载)实现87.4%识别
TF之NN:利用DNN算法(SGD+softmax+cross_entropy)对mnist手写数字图片识别训练集(TF自带函数下载)实现87.4%识别 输出结果 代码设计 import numpy ...
-
ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类
ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类 输出结果 设计思路 核心代码 metrics.adjusted_rand_score(y_test, y_ ...