TF之DNN:利用DNN【784→500→10】对MNIST手写数字图片识别数据集(TF自带函数下载)预测(98%)+案例理解DNN过程
相关推荐
-
【NLP实战】tensorflow词向量训练实战
实战是学习一门技术最好的方式,也是深入了解一门技术唯一的方式.因此,NLP专栏计划推出一个实战专栏,让有兴趣的同学在看文章之余也可以自己动手试一试. 本篇介绍自然语言处理中最基础的词向量的训练. 作者 ...
-
DL之DNN:利用DNN【784→50→100→10】算法对MNIST手写数字图片识别数据集进行预测、模型优化
DL之DNN:利用DNN[784→50→100→10]算法对MNIST手写数字图片识别数据集进行预测.模型优化 导读 目的是建立三层神经网络,进一步理解DNN内部的运作机制 输出结果 设计思路 核心代 ...
-
DL之DNN:利用DNN算法对mnist手写数字图片识别数据集(sklearn自带,1797*64)训练、预测(95%)
DL之DNN:利用DNN算法对mnist手写数字图片识别数据集(sklearn自带,1797*64)训练.预测(95%) 数据集展示 先查看sklearn自带digits手写数据集(1797*64) ...
-
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测 输出结果 1.10.0 Size of: - Trai ...
-
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测 输出结果 下边两张图对应查看,可知,数字0有965个是 ...
-
TF之NN:利用DNN算法(SGD+softmax+cross_entropy)对mnist手写数字图片识别训练集(TF自带函数下载)实现87.4%识别
TF之NN:利用DNN算法(SGD+softmax+cross_entropy)对mnist手写数字图片识别训练集(TF自带函数下载)实现87.4%识别 输出结果 代码设计 import numpy ...
-
TF之CNN:利用sklearn(自带手写数字图片识别数据集)使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线
TF之CNN:利用sklearn(自带手写数字图片识别数据集)使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线 输出结果 设计代码 import tenso ...
-
TF之LoR:基于tensorflow利用逻辑回归算LoR法实现手写数字图片识别提高准确率
TF之LoR:基于tensorflow利用逻辑回归算LoR法实现手写数字图片识别提高准确率 输出结果 设计代码 #TF之LoR:基于tensorflow实现手写数字图片识别准确率 import ten ...
-
TF:利用是Softmax回归+GD算法实现MNIST手写数字图片识别(10000张图片测试得到的准确率为92%)
TF:利用是Softmax回归+GD算法实现MNIST手写数字图片识别(10000张图片测试得到的准确率为92%) 设计思路 全部代码 #TF:利用是Softmax回归+GD算法实现手写数字识别(10 ...
-
DL之NN:基于(sklearn自带手写数字图片识别数据集)+自定义NN类(三层64→100→10)实现97.5%准确率
DL之NN:基于(sklearn自带手写数字图片识别数据集)+自定义NN类(三层64→100→10)实现97.5%准确率 输出结果 核心代码 #DL之NN:基于sklearn自带手写数字图片识别数据集 ...