DL之NN:基于(sklearn自带手写数字图片识别数据集)+自定义NN类(三层64→100→10)实现97.5%准确率
相关推荐
-
python用支持向量机回归(SVR)模型分析用电量预测电力消费
原文链接:http://tecdat.cn/?p=23921 本文描述了训练支持向量回归模型的过程,该模型用于预测基于几个天气变量.一天中的某个小时.以及这一天是周末/假日/在家工作日还是普通工作日的 ...
-
训练集、测试集(train_test_split)
如果拿所有原始数据来训练,存在的问题: 模型很差无法调整: 真实环境难以拿到真实 label: 所以将数据区分为 训练数据 和 测试数据(train test split): 将训练数据来训练模型:然 ...
-
机器学习算法(二): 朴素贝叶斯(Naive Bayes)
机器学习算法(二): 朴素贝叶斯(Naive Bayes)
-
TF之CNN:利用sklearn(自带手写数字图片识别数据集)使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线
TF之CNN:利用sklearn(自带手写数字图片识别数据集)使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线 输出结果 设计代码 import tenso ...
-
DL之DNN:利用DNN算法对mnist手写数字图片识别数据集(sklearn自带,1797*64)训练、预测(95%)
DL之DNN:利用DNN算法对mnist手写数字图片识别数据集(sklearn自带,1797*64)训练.预测(95%) 数据集展示 先查看sklearn自带digits手写数据集(1797*64) ...
-
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测 输出结果 1.10.0 Size of: - Trai ...
-
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测 输出结果 下边两张图对应查看,可知,数字0有965个是 ...
-
ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类
ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类 输出结果 设计思路 核心代码 metrics.adjusted_rand_score(y_test, y_ ...
-
DL之DNN:利用DNN【784→50→100→10】算法对MNIST手写数字图片识别数据集进行预测、模型优化
DL之DNN:利用DNN[784→50→100→10]算法对MNIST手写数字图片识别数据集进行预测.模型优化 导读 目的是建立三层神经网络,进一步理解DNN内部的运作机制 输出结果 设计思路 核心代 ...
-
TF之DNN:利用DNN【784→500→10】对MNIST手写数字图片识别数据集(TF自带函数下载)预测(98%)+案例理解DNN过程
TF之DNN:利用DNN[784→500→10]对MNIST手写数字图片识别数据集(TF自带函数下载)预测(98%)+案例理解DNN过程 输出结果 案例理解DNN过程思路 1.一张图像数组形状的变化: ...
-
Dataset之Handwritten Digits:Handwritten Digits(手写数字图片识别)数据集简介、安装、使用方法之详细攻略
Dataset之Handwritten Digits:Handwritten Digits(手写数字图片识别)数据集简介.安装.使用方法之详细攻略 Handwritten Digits数据集的简介 根 ...
-
DL之NN/Average_Darkness/SVM:手写数字图片识别(本地数据集50000训练集+数据集加4倍)比较3种算法Average_Darkness、SVM、NN各自的准确率
DL之NN/Average_Darkness/SVM:手写数字图片识别(本地数据集50000训练集+数据集加4倍)比较3种算法Average_Darkness.SVM.NN各自的准确率 数据集下载以及 ...