【原创】梯度下降(Gradient Descent)小结
相关推荐
-
最优化算法之牛顿法、高斯-牛顿法、LM算法
上一篇文章中主要讲解了最优化算法中的梯度下降法,类似的算法还有牛顿法.高斯-牛顿法以及LM算法等,都属于多轮迭代中一步一步逼近最优解的算法,本文首先从数学的角度解释这些算法的原理与联系,然后使用Ope ...
-
树模型奠基性论文解读| GBM: Gradient Boosting Machine
树模型奠基性论文解读| GBM: Gradient Boosting Machine
-
ICML2019论文 | 炼丹?找到神经网络的全局最优解
训练好神经网络是个老大难问题.其中一个难点,就在调参以使训练数据上的损失(loss)收敛.领域中流传有各类调参技巧.然而,很多技巧并无理论支持,时灵时不灵,以致调参被称为炼丹,是成不成全靠天的玄学.这 ...
-
DL一(ML基础知识)
基础知识ML 在进行深度学习前,根据学习网站的建议,首先学习机器学习的基础课程,学习资料主要是Andrew讲的ShortVideo,网址:http://openclassroom.stanford.e ...
-
深度神经网络(DNN)反向传播算法(BP)
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...
-
梯度下降(Gradient Descent)小结
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...
-
浅谈随机梯度下降&小批量梯度下降
机器学习三要素 上次的报告中,我们介绍了一种用于求解模型参数的迭代算法--梯度下降法.首先需要明确一点,即"梯度下降算法"在一个完整的统计学习流程中,属于什么?根据<统计学习 ...
-
梯度下降直觉 - 机器是如何学习的
梯度下降法是一种求函数最小值的算法.在机器学习中,预测值和实际值之间的差称为误差.将所有数据点上的所有误差加在一起时称为成本. 当然,我们希望最小化代表此成本的函数 - 成本函数. 在机器学习中梯度下 ...
-
原创|增值税率下降对产品价格的影响分析及发票开具
文章导读 4月1日起增值税最新政策:由目前的16%降至13%.10%降至9%.其它保持不变.这个减税政策对产品价格有什么影响?发票如何开具更有利呢?让我们以案例方式,一起来探讨减税政策下都有哪些改变? ...
-
梯度下降方法的视觉解释(动量,AdaGrad,RMSProp,Adam)
> Animation of 5 gradient descent methods on a surface: gradient descent (cyan), momentum (magent ...
-
理解凸性:为什么梯度下降适用于线性回归
在机器学习中我们总会遇到线性回归问题,但是为什么我们可以用梯度下降算法来求解线性回归成本函数呢?凸性理论可以让我们更容易理解这个问题. 凸性 首先,通过凸集和凸函数定义凸度.凸集的定义如下: 在二维中 ...
-
梯度下降[梯度下降]
%% 最速下降法图示% 设置步长为0.1,f_change为改变前后的y值变化,仅设置了一个退出条件.syms x;f=x^2;step=0.1;x=2;k=0; %设置步长,初始值, ...
-
不能兼顾速度与精度,利物浦大学、牛津大学揭示梯度下降复杂度理论,获STOC 2021最佳论文
机器之心报道 机器之心编辑部 梯度下降算法具有广泛的用途,但是关于它的计算复杂度的理论研究却非常少.最近,来自利物浦大学.牛津大学的研究者从数学的角度证明了梯度下降的计算复杂度,这项研究也入选 STO ...
-
梯度下降—Python实现
梯度下降是数据科学的基础,无论是深度学习还是机器学习.深入了解梯度下降原理一定会对你今后的工作有所帮助. 你将真正了解这些超参数的作用以及处理使用此算法可能遇到的问题. 然而,梯度下降并不局限于一种算 ...
