随着工业互联网、工业4.0等新一轮工业革命的兴起,智慧电厂已成为我国发电企业转型升级,应对能源变革的新举措,其体系架构和智能系统建设成为当前亟待解决的问题。现阶段,火力发电厂系统建设一般遵循控制层、监控层、信息管理层三层体系架构部署,在其上分别建设了分散控制系统(Distributed Control System, DCS)、厂级监控信息系统(Supervisory Information System, SIS)、管理信息系统(Management Information System, MIS)等系统,各层及系统之间缺乏数据交互性和统一性,使之形成各个数据孤岛,导致业务流程效率低,数据难以挖掘利用,智能系统难以搭建。随着发电企业多类型市场竞争和能源个性化需求的加大,以及越来越多的智能设备和智能技术在发电厂得到应用,发电厂的传统体系架构难以适应智慧电厂的建设要求。近年,我国对智慧电厂的研究和建设开展了许多有益探索,有学者从不同角度对智能发电、智慧电厂提出了不同的定义和体系架构,但其与工业互联网体系融合较少,智慧电厂作为工业互联网理念在发电侧的集中体现,有必要将工业互联网理念引入智慧电厂研究和建设中,增强各系统之间的协同性和扩展性,提高发电企业内外信息系统与物理系统的融合程度。工业互联网和工业4.0作为高度互联的智能化工业生态系统,核心是利用信息物理融合系统(Cyber-Physical Systems, CPS)优化企业的智能生产管理,促进产业的集成发展与合作。CPS是以网络化为基础,通过计算、通信及控制技术(Computing、Communication、Control, 3C)深度融合,构建一个计算、网络和物理实体有机融合的复杂系统。通过CPS技术可以实现工业系统实时状态感知、动态仿真控制和信息服务,使该系统更加高效、可靠与协同运行。2013年4月,德国政府在汉诺威工业博览会上正式明确提出了以信息物理融合系统为支撑的工业4.0战略。之后欧美等国家对工业互联网及CPS开展了大量研究和建设工作,在通过资源集聚、市场验证和应用创新后,欧美的工业互联网平台日渐成熟。而目前我国工业互联网实践建设处于探索阶段。2017年,工业和信息化部、国家标准化管理委员会联合发布《信息物理系统白皮书(2017)》,明确了信息物理系统的定义和CPS工程建设路径。随着云计算、大数据、物联网和人工智能的发展,对系统多时空尺度异源信息的处理能力,以及开放性和共享性的要求加大,人类的知识经验和社会特性逐渐渗透进CPS,使CPS向着广义互联的人类群体以及社会化发展。因此,国内外学者开始进一步拓展CPS内涵,周济等认为在传统的人和物理系统之间增加信息系统,使传统的工业系统具有学习和产生知识的能力,提出了以人-信息-物理系统(Human-Cyber-Physica Systems, HCPS)为基础,深度融合人工智能技术的中国新一代智能制造的发展体系。还有学者认为通过构建信息物理社会系统(Cyber-Physical-Social Systems, CPSS)延伸CPS,可以较好地实现信息空间、物理空间和社会空间的无缝结合。如王飞跃等以复杂系统理论和默顿定律为基础,将人及人类纳入系统之中,构建虚实互动、闭环反馈和自治的平行系统,提出了工业5.0信息-物理-社会融合平行体系。在电力领域,相关学者结合电力特征和CPS技术提出了电力信息物理系统(Cyber-Physical Energy Systems, CPES),为电力智能化建设提供了新的理论和方法。目前,在CPES体系架构、系统建模仿真、安全可靠性、系统规划与运行调度等方面进行了初步探究,仍有许多问题和关键技术亟待解决。针对CPES体系架构研究,有学者设计了应用层、认知层、网络层、控制感知层和物理层五层的能源互联网CPS框架。薛禹胜等提出了智能电网的CPS技术体系框架,解决电力基础设施与网络系统的高效交互和无缝集成问题。随着越来越具有开放和竞争特性的智慧能源和能源互联网的提出,以及“云大物移智”等先进技术的发展,使能源的生产和使用越来越具有人类–社会属性,基于此,有学者进一步考虑社会元素和能源系统间交互的影响,提出了智能电网和电力物联网融合的电力CPSS,以助于更好地解决电力经济、市场管制、博弈及攻击行为、需求侧等对系统发展、可靠性和优化运行的不确定及复杂度的影响。程乐峰等基于群体及其知识自动化的理论方法构建了下一代能源电力系统的CPSS理想和工程试验框架体系,将人类调度员与能源市场的人类社会行为与信息物理系统融合为一个“大”闭环复杂系统。
图1 智慧电厂工业互联网参考架构模型智慧电厂被认为是一个具有自我感知、自学习和自适应能力,更加安全、环保、高效和经济的发电厂。智慧电厂内涵与仿人类生物学特征和功能具有高度的相似性。利用仿生学的拟态和演化等方法对智慧电厂体系架构展开仿生特性分析,从体系结构仿生、功能仿生等角度构建具有一定意识形态的智慧电厂智能体。智慧电厂(Intelligent Power Plant, IPP)仿生体系模型为
表1 智慧电厂信息物理系统的演化1)数字化电厂(Digital Power Plant, DPP)主要是对电厂物理对象(如人、机器、燃料及物资、系统机理、环境等)和工作对象(规划设计、基建、运行维护等)的数字化采集、存储、处理、定量分析和决策,使电厂信息的占有和应用打破空间和时间的某些限制,使信息的应用效益达到最大化。此阶段主要将电厂生产控制的PLC嵌入式系统和信息系统融合为CPS。2)智能化电厂(Smart Power Plant, SPP)是随着新一代网络通信技术和“云大物移智”的发展,以硬件为支撑的嵌入式CPS系统逐渐向网络嵌入式转变,使得人类行为、情感、知识等更容易融入CPS中HCPS,使人在系统场景的构建之中,具有自治性、反应性、主动性、进化性等智能体特征。目前我国大部分电厂处于DPP向SPP建设进程中。3)智慧化电厂(Intelligent Power Plant, IPP),随着SPP建设中HCSP智能体的成熟,物理、信息和社会的实时化平行互动需求将加剧,催生出了CPSS多智能体(Multi-Agent System, MAS)建设需求,通过多智能体使各智能体互相通信,彼此规划、协调组织和决策。有效提高电厂优化预测决策等问题的鲁棒性和适应性能力,实现物理、人和社会等资源的一体化协调与融合。3 智慧电厂CPS/HCPS/CPSS系统的构建3.1 智慧电厂仿生CPS神经系统框架CPS内涵高度符合智慧电厂的建设目标和要求,为智慧电厂体系架构、建模分析与控制、智慧管理等建设提供了方法和工具。利用信息通信控制技术模拟生物体感觉器官、神经元、效应器以及中枢神经系统在智能活动中的信息采集、处理和控制过程,构建仿生CPS神经系统框架,如图3所示。CPS仿生神经系统由单个CPS系统(神经元)组成,通过采用统一的通信和接口标准,实现各个CPS子系统信息共享和协作。CPS仿生神经系统的调节过程是根据需求使用不同的一次能源输入,利用量测装置(感受器)采集数据,所采集的数据信息通过有线、无线通信网络(传入神经)传输至信息数据平台(中枢神经系统),然后信息数据平台对这些数据进行分析计算后,将生成的决策及指令通过有线、无线通信网络(传出神经)传输至执行机构(效应器)。根据用户个性化需求调整电、热、冷等多种能源生产的特定参数。电厂借助这一套“仿生神经系统”实现自我感知、自学习和自适应、行为决策能力。
图5 智慧电厂信息物理系统网络结构4 基于仿生体系的智慧电厂工业互联网平台火力发电厂是一个涉及多参数、多耦合和多目标的复杂连续工业系统,不能以孤立的离散数据直接控制与管理。为了实现智慧电厂CPS/HCPS/CPSS的自由组合,需要具有规范、可分解、统一的智慧电厂工业互联网平台。通过遵循面向服务的架构(SOA),基于信息和通信技术(Information and Communication Technology, ICT),在统一的模型及服务接口标准基础上,构建智慧电厂工业互联网平台。通过横向服务总线实现发电厂内部工业生产或管理全部信息的集成优化。通过纵向服务总线实现电厂内部不同部门、不同业务之间的互联互通、协同优化,以及集团内相关业务系统的互联。通过服务总线实现与其他业务系统(如信息化系统、自动化控制系统、电网调度系统、交易市场系统等)的信息共享、协调优化控制及流程化管控。因此,智慧电厂工业互联网平台应可为智能系统和业务功能建设提供安全、可靠、高效和稳定的应用平台和数据平台服务支撑,实现系统和业务的横向集成与纵向贯通,打破数据孤岛。通过模拟神经系统神经细胞的分层现象,本文基于仿生体系,构建如图6所示的智慧电厂工业互联网平台。智慧电厂HCPS/CPSS划分为设备层(效应器)、感知层(细胞膜)、基础设施层(细胞器)、平台层(细胞质)和应用层(细胞核)的层级架构。在仿生智慧电厂五层架构体系中,每一层相互独立且互联互通,实现了发电厂信息离散系统、社会/人连续系统和发电物理连续系统在计算、通信、传感、控制、管理等方面的有机融合与高度协作,打破业务和数据孤岛,最终实现智慧电厂信息流、业务流、能源流的三流合一。1)物理层:包括物体物理、物体人、物理社会,其中物体物理指发电厂各系统和设备,构成了从化学能至机械能、电能转换和能量流动的复杂发电系统。2)感知层:感知层相当于人体神经系统的基本结构神经元,应具有视觉、听觉、触觉、嗅觉等神经末梢功能,是解决发电厂数据孤岛问题,构建社会、人、信息、物理系统的基础。通过对现有发电厂DCS-SIS-MES系统存储的实时数据库和关系数据库数据、测量数据以及外部数据的安全高效采集,实现智慧电厂泛在感知。如对电厂人员和设备物资的标识、位置、状态,以及生产工艺、设备状态、作业过程、管理内容和流程数字化,可促进电厂人、机/物、社会信息资源集成共享和全面互联。通过将电厂现有的KKS编码、设备编码、物资编码、固定资产编码进行联动关联,构建新的四码合一的标准标识编码,赋予发电厂设备、物资、工艺唯一ID,保证数据的唯一可靠性。利用OPC、MQTT等技术将底层多源数据转换为工业互联网平台可以接收的数据格式进行标识解析,然后通过协议转换器实现MODBUS、HART、PROFIBUS等底层通信协议的互联互通。对于部分时效性要求高的数据通过智能网关等新型边缘计算设备实现智能传感器和设备数据的汇聚处理,以及对边缘分析结果向云端平台的间接集成。可有效解决发电厂煤质在线测量、换热器性能监测,烟气流量监测,炉膛温度场仿真的及时性和可靠性,实现发电机组关键参数的实时测量与处理。