深入研究模型压缩经典Ghostnet:如何用少量计算生成大量特征图?
相关推荐
-
CV中的Attention和Self-Attention
CV中的Attention和Self-Attention
-
PyTorch实战: 使用卷积神经网络对照片进行分类
本文任务 我们接下来需要用CIFAR-10数据集进行分类,步骤如下: 使用torchvision 加载并预处理CIFAR-10数据集 定义网络 定义损失函数和优化器 训练网络并更新网络参数 测试网络 ...
-
CVPR2020论文解读—华为高效轻量级网络GhostNet, 性能超越谷歌MobileNetV3
AI研习图书馆,发现不一样的精彩世界 论文解读 华为诺亚方舟实验室提出的新型端侧神经网络架构GhostNet,在同样精度条件下,模型速度和计算量均少于此前SOTA算法,值得一看.GhostNet论文已 ...
-
憨批的语义分割重制版6——Pytorch 搭建自己的Unet语义分割平台
注意事项 学习前言 什么是Unet模型 代码下载 Unet实现思路 1.训练文件详解 2.LOSS解析 1.主干网络介绍 2.加强特征提取结构 3.利用特征获得预测结果 一.预测部分 二.训练部分 训 ...
-
PVT:可用于密集任务backbone的金字塔视觉transformer!
设为星标,干货直达! 自从ViT之后,关于vision transformer的研究呈井喷式爆发,从思路上分主要沿着两大个方向,一是提升ViT在图像分类的效果:二就是将ViT应用在其它图像任务中,比如 ...
-
可视化卷积神经网络的特征和过滤器
卷积神经网络是一种特殊类型的人工神经网络,广泛应用于图像识别.这种架构的成功始于 2015 年,当时凭借这种方法赢得了 ImageNet 图像分类挑战. 这些方法非常强大并且能够很好地进行预测,但同时 ...
-
最后一届ImageNet冠军模型:SENet
作者:小小将 编辑:黄俊嘉 前 言 在深度学习领域,CNN分类网络的发展对其它计算机视觉任务如目标检测和语义分割都起到至关重要的作用,因为检测和分割模型通常是构建在CNN分类网络(称为backbon ...
-
【知识星球】关于模型压缩,有三AI知识星球近一个月从模型精简,硬件实现,到模型剪枝分享了哪些内容
【知识星球】关于模型压缩,有三AI知识星球近一个月从模型精简,硬件实现,到模型剪枝分享了哪些内容
-
小白学PyTorch | 4 构建模型三要素与权重初始化
文章目录: 1 模型三要素 2 参数初始化 3 完整运行代码 4 尺寸计算与参数计算 这篇文章内容不多,比较基础,里面的代码块可以复制到本地进行实践,以加深理解. 喜欢的话,可以给公众号加一个星标,点 ...
-
【留言送书】轻量级骨架首选:MobileNetV3完全解析
2021年,文末留言送书精选留言中送出书籍一本! 前言 相对重量级网络而言,轻量级网络的特点是参数少.计算量小.推理时间短.更适用于存储空间和功耗受限的场景,例如移动端嵌入式设备等边缘计算设备.因此轻 ...
-
NTU Machine Learning 2020 hw3 CNN的做法
利用VGGnet来完成Image Classification,在Kaggle勉强过了Strong Baseline... 首先感谢一下NTU的李宏毅老师分享这么好的课程,还把作业也给分享了出来 作业 ...
