ML之K-means:基于K-means算法利用电影数据集实现对top 100 电影进行文档分类
相关推荐
-
PMI点互信息计算
点互信息PMI(Pointwise Mutual Information)这个指标来衡量两个事物之间的相关性(比如两个词). 在概率论中,我们知道,如果x跟y相互独立,则p(x,y)=p(x)p(y) ...
-
ML之H-Clusters:基于H-Clusters算法利用电影数据集实现对top 100电影进行文档分类
ML之H-Clusters:基于H-Clusters算法利用电影数据集实现对top 100电影进行文档分类 输出结果 先看输出结果 实现代码 # -*- coding: utf-8 -*- impor ...
-
ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练(模型保存+可视化)实现二分类预测
ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练(模型保存+可视化)实现二分类预测 数据集简介 Dataset之HiggsBoson: ...
-
ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练实现二分类预测(基于训练好的模型进行新数据预测)
ML之xgboost:基于xgboost(5f-CrVa)算法对HiggsBoson数据集(Kaggle竞赛)训练实现二分类预测(基于训练好的模型进行新数据预测) 输出结果 更新中-- 相关文章 ML ...
-
ML之xgboost&GBM:基于xgboost&GBM算法对HiggsBoson数据集(Kaggle竞赛)训练(两模型性能PK)实现二分类预测
ML之xgboost&GBM:基于xgboost&GBM算法对HiggsBoson数据集(Kaggle竞赛)训练(两模型性能PK)实现二分类预测 输出结果 finish loading ...
-
ML之DT:基于简单回归问题训练决策树(DIY数据集+三种深度的二元DT性能比较)
ML之DT:基于简单回归问题训练决策树(DIY数据集+三种深度的二元DT性能比较) 输出结果 设计思路 核心代码 for i in range(1, len(xPlot)): lhList = lis ...
-
ML之DT:基于简单回归问题训练决策树(DIY数据集+七种{1~7}深度的决策树{依次进行10交叉验证})
ML之DT:基于简单回归问题训练决策树(DIY数据集+七种{1~7}深度的决策树{依次进行10交叉验证}) 输出结果 设计思路 核心代码 for iDepth in depthList: for ix ...
-
ML之FE:基于FE特征工程对RentListingInquries数据集进行预处理并导出为三种格式文件(csv格式/txt格式/libsvm稀疏txt格式)
ML之FE:基于FE特征工程对RentListingInquries数据集进行预处理并导出为三种格式文件(csv格式/txt格式/libsvm稀疏txt格式)输出结果1.1.RentListingIn ...
-
TF之GD:基于tensorflow框架搭建GD算法利用Fashion-MNIST数据集实现多分类预测(92%)
TF之GD:基于tensorflow框架搭建GD算法利用Fashion-MNIST数据集实现多分类预测(92%) 输出结果 Successfully downloaded train-images-i ...
-
ML之DT:利用DT(DTC)实现对iris(鸢尾花)数据集进行分类并可视化DT结构
ML之DT:利用DT(DTC)实现对iris(鸢尾花)数据集进行分类并可视化DT结构 输出结果 实现代码 #1. iris = load_iris() dir(iris) iris_feature_n ...