【时间序列】自回归模型
相关推荐
-
ARIMA时间序列模型的步骤, 程序和各种检验, 附上代码并通过示例进行解读!
邮箱:econometrics666@126.com 所有计量经济圈方法论丛的do文件, 微观数据库和各种软件都放在社群里.欢迎到计量经济圈社群交流访问. 关于时间序列方法,1.时间序列分析的各种程序 ...
-
R语言中ARMA,ARIMA(Box-Jenkins),SARIMA和ARIMAX模型用于预测时间序列数据
原文链接:http://tecdat.cn/?p=5919 在本文中,我将介绍ARMA,ARIMA(Box-Jenkins),SARIMA和ARIMAX模型如何用于预测时间序列数据. 使用滞后算子计算 ...
-
PYTHON用时变马尔可夫区制转换(MRS)自回归模型分析经济时间序列
原文链接:http://tecdat.cn/?p=22617 本文提供了一个在统计模型中使用马可夫转换模型模型的例子,来复现Kim和Nelson(1999)中提出的一些结果.它应用了Hamilton( ...
-
R语言时间序列TAR阈值自回归模型
原文链接:http://tecdat.cn/?p=5231 为了方便起见,这些模型通常简称为TAR模型.这些模型捕获了线性时间序列模型无法捕获的行为,例如周期,幅度相关的频率和跳跃现象.Tong和Li ...
-
可以在面板回归分析中使用时间序列解释变量或被解释变量吗?
之前,社群讨论了"显著不显著的后背是什么, 非(半)参估计里解决内生性","计量社群里关于使用交互项还是中介效应分析开展机制研究的讨论","为啥面板数 ...
-
R语言经济学:动态模型平均(DMA)、动态模型选择(DMS)预测原油时间序列价格
原文链接:http://tecdat.cn/?p=22458 简介 本文提供了一个经济案例.着重于原油市场的例子.简要地提供了在经济学中使用模型平均和贝叶斯方法的论据,使用了动态模型平均法(DMA), ...
-
R语言时间序列GARCH模型分析股市波动率
原文链接:http://tecdat.cn/?p=22360 在这篇文章中,我们将学习一种在价格序列中建立波动性模型的标准方法,即广义自回归条件异方差(GARCH)模型. 价格波动的 GARCH 模型 ...
-
R语言用ARIMA模型,ARIMAX模型预测冰淇淋消费时间序列数据
原文链接:http://tecdat.cn/?p=22511 标准的ARIMA(移动平均自回归模型)模型允许只根据预测变量的过去值进行预测.该模型假定一个变量的未来的值线性地取决于其过去的值,以及过去 ...
-
R语言时变向量自回归(TV-VAR)模型分析时间序列和可视化
原文链接:http://tecdat.cn/?p=22350 在心理学研究中,个人主体的模型正变得越来越流行.原因之一是很难从人之间的数据推断出个人过程.另一个原因是,由于移动设备无处不在,从个人获得 ...
-
R语言使用ARIMAX预测失业率经济时间序列数据
原文链接:http://tecdat.cn/?p=22521 在大数据的趋势下,我们经常需要做预测性分析来帮助我们做决定.其中一个重要的事情是根据我们过去和现在的数据来预测未来.这种方法我们通常被称为 ...
-
Python和R用EWMA,ARIMA模型预测时间序列
原文链接:http://tecdat.cn/?p=21773 本文学习创建时间序列预测的步骤,关注Dickey-Fuller检验和EWMA,ARIMA(自回归移动平均)模型 从理论上学习这些概念以及它 ...