【机器学习】XGboost
相关推荐
-
【原创】机器学习从零开始系列连载(6)—— Additive Tree 模型
Additive Tree 模型 Additive tree models (ATMs)是指基础模型是树形结构的一类融合模型,可做分类.回归,很多经典的模型可以被看做ATM模型,比如Random fo ...
-
第113天: Python XGBoost 算法项目实战
Python 实现机器学习 如果你的机器学习预测模型表现得不尽如人意,那就用XGBoost.XGBoost算法现在已经成为很多数据工程师的重要武器. XGBoost 算法 说到XGBoost,不得不提 ...
-
XGBoost详解
Prerequisite: CART回归树CART回归树是假设树为二叉树,通过不断将特征进行分裂.比如当前树结点是基于第j个特征值进行分裂的,设该特征值小于s的样本划分为左子树,大于s的样本划分为右子 ...
-
机器学习:XGBoost vs 神经网络
大家好,我是老胡 XGBoost是竞赛和工业界都很常用的机器学习模型 我之前有两篇文章详细解读过: 100天搞定机器学习|Day60 遇事不决,XGBoost 100天搞定机器学习|Day61 手算+ ...
-
ML之回归预测:利用十(xgboost,10-1)种机器学习算法对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测值VS真实值——bug调试记录
ML之回归预测:利用十(xgboost,10-1)种机器学习算法对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测值VS真实值--bug调试记录 输出结果 1.增加XGBR算法 1. ...
-
ML之回归预测:利用两种机器学习算法(LiR,XGBoost(调优+重要性可视化+特征选择模型))对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测值VS真实值
ML之回归预测:利用两种机器学习算法(LiR,XGBoost(调优+重要性可视化+特征选择模型))对无人驾驶汽车系统参数(2017年的data,18+2)进行回归预测值VS真实值 输出结果 1.LiR ...
-
Interview:算法岗位面试—10.11下午—上海某公司算法岗位(偏机器学习,互联网数字行业)技术面试考点之XGBoost的特点、python的可变不可变的数据类型、赋值浅拷贝深拷贝区别
ML岗位面试:10.11下午-上海某公司算法岗位(偏机器学习,互联网数字行业)技术面试考点之XGBoost的特点.python的可变不可变的数据类型.赋值浅拷贝深拷贝区别Interview:算法岗位面 ...
-
ML之回归预测:利用十类机器学习算法(线性回归、kNN、SVM、决策树、随机森林、极端随机树、SGD、提升树、LightGBM、XGBoost)对波士顿数据集回归预测(模型评估、推理并导到csv)
ML之回归预测:利用十类机器学习算法(线性回归.kNN.SVM.决策树.随机森林.极端随机树.SGD.提升树.LightGBM.XGBoost)对波士顿数据集[13+1,506]回归预测(模型评估.推 ...
-
机器学习的7个步骤
重磅干货,第一时间送达 机器学习是技术爱好者中高度关注的领域.作为人工智能(AI)的一个分支,它基本上是一种算法或模型,可以通过"学习"来改善自身,因此变得越来越精通执行其任务.机 ...
-
重磅! 汉森教授又修订了风靡世界的“计量经济学”教材, 为博士生们增加了DID, RDD, 机器学习等全新内容!
邮箱:econometrics666@126.com 所有计量经济圈方法论丛的code程序, 宏微观数据库和各种软件都放在社群里.欢迎到计量经济圈社群交流访问. 今天,主要是告知一个消息:" ...
-
来一起捋一捋机器学习分类算法
来自:算法与数学之美 可是,你能够如数家珍地说出所有常用的分类算法,以及他们的特征.优缺点吗?比如说,你可以快速地回答下面的问题么: KNN算法的优缺点是什么? Naive Bayes算法的基本假设是 ...
-
基于机器学习的肺结节良恶性分类研究进展
基于机器学习的肺结节良恶性分类研究进展 肺癌是发病率和死亡率增长最快,对生命威胁最大的恶性肿瘤之一.据世界卫生组织报告,中国在过去40年中,肺癌死亡率增加了4倍,未来可能还会进一步增加.肺癌患者的生存 ...