ML之NB:朴素贝叶斯Naive Bayesian算法的简介、应用、经典案例之详细攻略
相关推荐
-
变分贝叶斯方法 | 机器之心
变分贝叶斯是一类用于贝叶斯估计和机器学习领域中近似计算复杂(intractable)积分的技术.它主要应用于复杂的统计模型中,这种模型一般包括三类变量:观测变量(observed variables, ...
-
R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病
原文链接:http://tecdat.cn/?p=23061 数据集信息: 这个数据集可以追溯到1988年,由四个数据库组成.克利夫兰.匈牙利.瑞士和长滩."目标 "字段是指病人是 ...
-
机器学习算法(二): 朴素贝叶斯(Naive Bayes)
机器学习算法(二): 朴素贝叶斯(Naive Bayes)
-
强化学习成大热门!ICML 2020 热门话题引用量最高的论文
热门主题 根据对入选论文标题的关键词分析,入选前10的热门话题为:强化学习,神经网络,Bandit,高斯过程,图,表示,最优输运,网络,随机性,表示学习. 不同主题高引论文 利用 Aminer 按主题 ...
-
ML之LoR:逻辑回归LoR算法的简介、应用、经典案例之详细攻略
ML之LoR:逻辑回归LoR算法的简介.应用.经典案例之详细攻略 逻辑回归LoR算法的简介 逻辑回归最适合二进制分类(y = 0或1的数据集,其中1表示默认类).例如:在预测事件是否发生时,发生的事件 ...
-
ML之SVM:SVM算法的简介、应用、经典案例之详细攻略
ML之SVM:SVM算法的简介.应用.经典案例之详细攻略 SVM算法的简介 支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning ...
-
ML之RF:随机森林RF算法简介、应用、经典案例之详细攻略
ML之RF:随机森林RF算法简介.应用.经典案例之详细攻略 随机森林RF算法简介 随机森林指的是利用多棵决策树对样本进行训练并预测的一种分类器.它包含多个决策树的分类器,并且其输出的类别是由个别树输出 ...
-
ML之kNN:k最近邻kNN算法的简介、应用、经典案例之详细攻略
ML之kNN:k最近邻kNN算法的简介.应用.经典案例之详细攻略kNN算法的简介邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓 ...
-
ML之Clustering之K-means:K-means算法简介、应用、经典案例之详细攻略
ML之Clustering之K-means:K-means算法简介.应用.经典案例之详细攻略 K-means算法简介 K-均值是著名聚类算法,它找出代表聚类结构的k个质心.如果有一个点到某一质心的距离 ...
-
ML之SSL:Semi-Supervised Learning半监督学习的简介、应用、经典案例之详细攻略
ML之SSL:Semi-Supervised Learning半监督学习的简介.应用.经典案例之详细攻略 参考文章:<2019中国人工智能发展报告>-清华大学中国工程院知识智能中心-201 ...
-
ML之DT之CART:分类与回归树CART算法的简介、应用、经典案例之详细攻略
ML之DT之CART:分类与回归树CART算法的简介.应用.经典案例之详细攻略 分类与回归树CART算法简介 分类与回归树(Classification and Regression Trees, C ...
-
ML之UL:无监督学习Unsupervised Learning的概念、应用、经典案例之详细攻略
ML之UL:无监督学习Unsupervised Learning的概念.应用.经典案例之详细攻略 参考文章:<2019中国人工智能发展报告>-清华大学中国工程院知识智能中心-201912 ...
-
ML之SL:监督学习(Supervised Learning)的简介、应用、经典案例之详细攻略
ML之SL:监督学习(Supervised Learning)的简介.应用.经典案例之详细攻略 参考文章:<2019中国人工智能发展报告>-清华大学中国工程院知识智能中心-201912 相 ...