ML之Clustering之K-means:K-means算法简介、应用、经典案例之详细攻略
相关推荐
-
陈栋等:基于订单位置聚类的雏鸡配送车辆调度优化模型(2020年第4期)
热烈祝贺我刊被评为"中国农林核心期刊"(2020版) 基于订单位置聚类的雏鸡配送车辆调度优化模型 陈栋1,2, 陈天恩1,2*, 姜舒文1, 张驰1, 王聪1, 鲁梦瑶1 (1.国 ...
-
R语言谱聚类、K-MEANS聚类分析非线性环状数据比较
原文链接:http://tecdat.cn/?p=23276 有些问题是线性的,但有些问题是非线性的.我假设,你过去的知识是从讨论和解决线性问题开始的,这是一个自然的起点.对于非线性问题的解决,往往涉 ...
-
k-means聚类算法原理总结
k-means算法是非监督聚类最常用的一种方法,因其算法简单和很好的适用于大样本数据,广泛应用于不同领域,本文详细总结了k-means聚类算法原理 . 目录 1. k-means聚类算法原理 2. k ...
-
【图像分类】简述无监督图像分类发展现状
无监督图像分类问题是图像分类领域一项极具挑战的研究课题,本文介绍了无监督图像分类算法的发展现状,供大家参考学习. 作者 | 郭冰洋 编辑 | 言有三 1 简介 近年来,深度学习在图像识别领域取得了前所 ...
-
ML之kNN:k最近邻kNN算法的简介、应用、经典案例之详细攻略
ML之kNN:k最近邻kNN算法的简介.应用.经典案例之详细攻略kNN算法的简介邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓 ...
-
ML之LoR:逻辑回归LoR算法的简介、应用、经典案例之详细攻略
ML之LoR:逻辑回归LoR算法的简介.应用.经典案例之详细攻略 逻辑回归LoR算法的简介 逻辑回归最适合二进制分类(y = 0或1的数据集,其中1表示默认类).例如:在预测事件是否发生时,发生的事件 ...
-
ML之SVM:SVM算法的简介、应用、经典案例之详细攻略
ML之SVM:SVM算法的简介.应用.经典案例之详细攻略 SVM算法的简介 支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning ...
-
ML之RF:随机森林RF算法简介、应用、经典案例之详细攻略
ML之RF:随机森林RF算法简介.应用.经典案例之详细攻略 随机森林RF算法简介 随机森林指的是利用多棵决策树对样本进行训练并预测的一种分类器.它包含多个决策树的分类器,并且其输出的类别是由个别树输出 ...
-
ML之NB:朴素贝叶斯Naive Bayesian算法的简介、应用、经典案例之详细攻略
ML之NB:朴素贝叶斯Naive Bayesian算法的简介.应用.经典案例之详细攻略 朴素贝叶斯Naive Bayesian算法的简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.朴素 ...
-
ML之SSL:Semi-Supervised Learning半监督学习的简介、应用、经典案例之详细攻略
ML之SSL:Semi-Supervised Learning半监督学习的简介.应用.经典案例之详细攻略 参考文章:<2019中国人工智能发展报告>-清华大学中国工程院知识智能中心-201 ...
-
ML之DT之CART:分类与回归树CART算法的简介、应用、经典案例之详细攻略
ML之DT之CART:分类与回归树CART算法的简介.应用.经典案例之详细攻略 分类与回归树CART算法简介 分类与回归树(Classification and Regression Trees, C ...
-
ML之UL:无监督学习Unsupervised Learning的概念、应用、经典案例之详细攻略
ML之UL:无监督学习Unsupervised Learning的概念.应用.经典案例之详细攻略 参考文章:<2019中国人工智能发展报告>-清华大学中国工程院知识智能中心-201912 ...
-
ML之SL:监督学习(Supervised Learning)的简介、应用、经典案例之详细攻略
ML之SL:监督学习(Supervised Learning)的简介.应用.经典案例之详细攻略 参考文章:<2019中国人工智能发展报告>-清华大学中国工程院知识智能中心-201912 相 ...
