玩转数据,从指标体系开始

编辑导语:指标体系的建立,能够驱动业务或公司更好地前进,同时也有助于利用指标体系评判业务状态,发现有异常的指标并予以修正。本文作者从自己实际工作实践出发,总结分享了搭建指标体系的相关经验,希望对大家有所帮助。

你对越刷越上瘾的抖音又爱又恨,对千人千面淘宝智能推荐的心仪商品满心欢喜,对踏足一个陌生城市因为有了地图、共享出行以及众多 App 的攻略而不再感到未知和害怕,互联网和城市数字化带来的变革,不仅仅是更便捷,还有人与人之间边界的拉近。

这一切,依赖于海量数据的线上化,基于大数据和人工智能技术的价值挖掘。正如王坚博士的《在线》书中所言:数据量大不重要,让数据在线才重要。

无论是企业还是个体,我们都在逐渐成为这规模不可及数据富矿的一份子。不管是原生互联网企业,还是不断进化中的传统企业,今天的企业正在逐步进化成数据企业。“数据是核心竞争力”成为了主流观点,而数字化转型的本质是为了提高生产力,将数据变为生产资料。

这一切, 都是为了实现精细化运营从而达到降本增效的目的。正所谓:数据最了不起的地方,就是靠最小的成本撬动更大的价值。

01 数据与中台

互联网最典型的特征是将用户行为和触点线上化,积累着海量级别数据。

行为分析、运营触达、用户画像、智能推荐、千人千面。一个个看似简单的词语,背后是海量数据驱动的结果。首先需要对用户的行为进行量化并收集,用户行为数据、交易数据又或者产品数据,都是企业数字资产极其核心的内容。而这些数据,往往会散落在企业的不同业务线,不同数据库,被分为若干个数据集合单元,无法形成数据闭环。

“如果无法衡量,那么就无法管理”。

为了连接这些信息孤岛的数据,可以借助中台的理念,即沉淀和去重业务线的数据,将不同系统中的数据进行全面汇集和管理,提高信息传递效率。中台的输出形式为标准化的 API,数据中台可以简单理解为包含数仓体系和数据应用集的结合。

数据的利用可以分为四个阶段:采集、存储、分析、展示。,也对应着以上为数仓体系不同模块。包含了数据底层(采集和存储)、数据分析和数据展示。

数据底层主要负责管理数据,包括数据采集、数据 ETL、数据仓库构建等环节,提供数据基础;数据分析主要是利用SQL查询、OLAP 分析、数据挖掘以及可视化等方法抽取数据仓库中的数据,形成数据价值。

其中,数据分析和展示是堪比砂砾淘金的壮举,将数据转化为有价值的信息,减少主观决策。然而口号容易,落地难。

无论是营销活动,还是产品迭代,又或者是商业智能,做到数据决策的第一步,是搭建一套符合业务事实的指标体系。

02 指标与指标体系

指标是什么呢?我们为什么又需要指标体系。

无论是公司,还是产品又或者是服务,最终都会有使用对象。“自嗨”是大忌,“反馈”是必然,根据使用者的声音和行为数据不段地调整产品迭代方向,才是一个良性循环。

指标的作用,则是将业务变的可描述、可度量、可拆解,通过将业务单元细分量化后,形成一个个统计的标准。而指标体系,则是将互相关联而又相对独立的指标组织分类,更好的以全局视野“以面看点”,分层次管理单个业务单元。

按照百度百科的介绍:“在统计研究中,如果要说明总体全貌,那么只使用一个指标往往是不够的,因为它只能反映总体某一方面的数量特征。”

通过指标体系,我们可以通过客观数据衡量业务发展质量,厘清业务发展阶段和现状,发现关键的“北极星指标”和“转化率”指标,还能用作为产品迭代和活动评估的有力支撑。

总的来说,指标可以分为两大类:过程类和结果类。

  • 过程类指标:用来衡量事件的过程变化,该类指标可以用来关注用户的需求为什么被满足或没被满足。如转化率、流失率等。

  • 结果类指标:用于衡量用户发生某个动作后所产生的结果,通常是延后知道的,很难进行干预,主要用来监控数据是否异常和业务事实。如 UV/PV、用户注册数等等。

03 指标的生产

无论是过程类还是结果类指标,要想保证各方的理解无歧义,除了保证数据输入口径统一,还需要保证指标定义的统一,而定义的统一,可以借助 MECE分析法(相互独立,完全穷尽),最终将指标拆解为一个个原子指标。

其拆解过程如下:

以上每个过程,都对应着一个具体的分析方法,下面以一个具体案例阐述每个环节的含义。

1)业务线:即产品线,如阿里的手淘线。

2)数据域:来源数仓概念,指面向业务分析,将业务过程或者维度进行抽象的集合。如淘宝的手淘线商品域、用户域、交易域等。

3)业务过程:相关业务事件组成的业务流程,如手淘用户域的注册、注销等。

4)修饰类型:对修饰词的抽象分类,如手淘的支付方式、用户来源等。

5)派生指标:派生指标=时间周期+修饰词+原子指标,可以选择多个修饰词,由具体的派生指标语义决定。如客单价(支付金额除以买家数)为派生指标。

  • 修饰词:继承修饰类型的数据域,除了维度外的修辞词语,如手淘的终端类型、用户性别等。

  • 时间周期:统计的时间范围,如近 30 天访问手淘的用户终端类型等

  • 原子指标:原子指标 = 业务过程+度量。其中度量是基于某一业务事件(支付、成单、退款)行为下的度量(份额、次数、频率、金额),是明确的统计口径,不可拆分指标,如支付金额,支付频率等。

6)维度:是事物或现象的某种特征,指度量单位,具备唯一性,如地理维度、时间维度等。

属性:隶属于维度,有定量和定性的区分,如省份名称、邮政编码等。

  • 定性:文字可维度如省份城市、性别、职业等。

  • 定量:数值类维度如收入、年龄等。

最终,根据以上拆解过程,我们得到了一个指标实例:最近 30 天 IOS 的各省份的注册数。

另外需要说明的是,上述案例得到的指标(最近 30 天 IOS 的各省份的注册数)属于过程类指标。实际上,过程类指标都是虚荣指标,即无法直接促进交易额增长,只能度量业务。常见的虚荣指标还有 PV/UV/总用户量等。

03 搭建指标体系

讲了这么多,终于开始步入正戏。

搭建指标体系需要贴合实际的业务场景,可以根据不同的分析方法和抽象模型自上而下的驱动指标体系建设。常用的指标搭建方法有 OSM 模型和指标分级。

指标分级比较简单,即将公司的北极星指标拆解成业务线指标,到最后执行侧的指标。体现了金字塔式的结构化思维。而OSM模型(Obejective,Strategy,Measurement)分别对应目标、策略、度量。一句话概括为了目标采取了哪些策略,如果度量这些策略的效果。

  • O:目标——用户使用产品的目标是什么?产品满足了用户的什么需求?

  • S:策略——为了达成上述目标我采取的策略是什么?

  • M:度量——这些策略随之带来的数据指标变化有哪些?

以笔者在云计算行业的为例,从该视角来看如何用 OSM 定义指标体系:

当然,以上仅是指标搭建方法。好比于我们做菜,有时候会需要菜谱,因为需要将顺序的放入食材和适当的火候才能烹饪成一道美味。

搭建指标体系可以借助一些抽象模型,比如,交易类平台最经典的“人货场”模型,用户、商品、场景以不同的方式组合在一起,往往也意味着不同的交易模式,但是核心还是一句话:谁在什么「场景」下「买」了什么「商品」。

以电商公司为例:用户(企业/个人)在场景(平台)购买了哪些资源(商品)。通过对三者的分析,覆盖到了产品线的方方面面,从定目标到完成,也借此来调整运营的策略以及功能迭代的侧重点。

“用户”的视角,主要是识别用户从哪里来(渠道)、用户有哪些特征(画像)、可以分成哪些层次(RFM模型)以及用户的消费质量等等。

“场景”的视角,主要识别平台的有多少流量,这些流量的转化率,购买了多少金额,购买了多少商品等等。

“商品”的视角,主要分析售前时客户需要哪些品类、这些品类如何定义,售中时是否需要优惠券,以及用售后时用户对于商品的使用情况及反馈建议等。

其实,作为一种抽象模型,起源于传统零售行业的“人货场”理论,在电商行业发扬光大。在如今不仅运用电商和零售,还能应用内容、社交等一系列场景。

比如,可以“人货场”的角度来剖析 B 站作为内容社区的发展。

  • 人——如何 看待 B 站的用户及创作者?用户从二次元→Z世代→Z+时代。创作者实现正向循环,PUGV内容占比越来越高。

  • 货——如何理解B站内容与创作者生态?从二次元到番剧,再到多元化发展。PUGV和 OGV 两头抓。

  • 场——B站平台社区环境如何建立?相对公平的流量分配机制,双列视频展示形式 + 单列沉浸式小视频,并承袭二次元弹幕的社区“梗文化”。

除了在经典的“人货场”抽象模型,还有被称为“海盗模型”的AARRR模型,分别对应了用户生命周期中的五个阶段:Acquisition [获取] 、Activation [激活] 、Retention [存留] 、Revenue [收益] 和Referral [推荐] 。

当用户处于不同的用户生命周期不同阶段时,也需要使用不同的指标去定义。根据海盗模型 AARRR 产品增长模型,可以将指标分为五大类:拉新指标、活跃指标、留存指标、转化指标、传播指标。

04 结语

数据是杠杆,借助数据能撬动更大的价值。但是玩转数据的前提,首先是存储和利用数据。很多时候,企业已经不满足分析 T+1 周期的离线数据,正如抖音的智能推荐解决了人与信息的匹配,淘宝的千人千面解决了人货匹配。这不仅要求数据在线,更对数据的实时性也有着越来越高的要求。

指标体系的生产和建立,依赖于数据的准确性、时效性和完整性。无论是数仓还是数据中台,都只是一种手段,更重要的是借助数据去实现量化业务态势,找到当前的症结,最终实现业务升值。

参考资料:

  1. 《数据中台实战》董超华

  2. 《中台产品经理宝典》刘天

  3. 《2019年中国数字中台行业研究报告》艾瑞咨询

  4. 《滴滴数据仓库指标体系建设实践》 滴滴技术

  5. 《从“人货场”看B站社区生态的养成》 方正证券

本文原创发布于人人都是产品经理

题图来自Unsplash, 基于CC0协议

(0)

相关推荐

  • 如何搭建指标管理体系?

    须知 公众号推文规则变了,读者会错过文章更新,点击上方 '企业数字化咨询'关注, 设为星标 后台回复[技术],申请加入资料分享&技术交流群 01 指标的定义 什么是指标?指标是反映某种事物或现 ...

  • 直播回顾|手把手教你搭建数据指标体系

    在产品和运营的工作中,我们会接触不同的数据.不同的指标.很多时候我们做的数据,都是针对单个点的层面去做,而最终显示出来的数据往往比较零散,无法串联起来,发现全局的问题.而指标体系化,则是将零散的数据串 ...

  • 指标体系建设——1个关键、2种模型、3个层级

    一.第一关键指标的约束力 一个产品的成功的关键是达到真正的专注,但这并不是说明每一个产品只需要关注一个指标就够了,而是在特定时期内,总是有一个指标,值得你关心它胜过一切. 这个指标被称为OMTM(On ...

  • 数据分析常用6种分析思路(下)

    作为一名数据分析师,你又没有发现,自己经常碰到一些棘手的问题就没有思路,甚至怀疑自己究竟有没有好好学过分析? 在上篇文章里,我们讲到了数据分析中的流程.分类.对比三大块,今天,我们继续讲剩下的3块内容 ...

  • 如何搭建数据指标体系:以抖音直播为例

    这篇文章以抖音直播为例,跟大家聊一聊数据指标体系的搭建. 引言: 理解数据指标体系,先从what和why的角度去思考和理解它 what(什么是数据指标体系): 基于业务目标,搭建起的数据维度的集合,衡 ...

  • 数据驱动业务的18个有效策略

    你老想着数据驱动业务,但发现有力无处使,或者没人鸟你,大鱼也有同样的经历,下面有18条策略锦囊,望你笑纳. 第一条 数据驱动业务中的"数据"广义来讲不仅仅是指存储在大数据平台的那堆 ...

  • 如何搭建一套完整的数据指标体系?

    导读:我们在讨论一个人是否健康的时候,常常会说出一些名词:体温.血压.体脂率等.当把这些指标综合起来考量,大概就能了解一个人的健康状况.同样,对于一家公司的业务是否正常(健康),可以通过指标体系对业务 ...

  • 理性做产品:用数据 漏斗、地图和路径来指引

    第一部分:数据+漏斗.地图和路径的概述 从事互联网5年+,一直做产品这么久,有过负责一个小产品,思考产出不断打磨优化:也有过负责一个模块,打通关键链路去做衍生拓展:当然也有负责一整块业务,调研分析从0 ...

  • 快手如何搭建一个好的数据指标体系?

    编辑整理:王亚季 出品平台:DataFunTalk 导读:本篇文章源自钱英男老师在『快手大数据|数据内容建设交流会』上的演讲,相关视频回放可用快手APP搜索"快手大数据"观看. 一 ...

  • 数据分析领域,你一定要知道的一些实践经验

    都说实践出真知,在日常工作中,我们总能通过不同的项目,将我们的数据分析技能进一步加强.但如果我们能将实践经验进一步抽丝剥茧,那么,一定能在数据分析领域做的更深一步. 今天,笔者想给大家分享一些我的工作 ...

  • 量化设计价值(二):体验度量深度实践

    前言 体验目标的达成,需要合理且客观的度量方法,体验度量的实践,需要度量框架的有力支撑.提高竞争优势,提升客户态度,保障产品可以即时的响应客户的需求.本篇文章的实践方法全部来源于酷家乐 B 端产品业务 ...