Python之机器学习-朴素贝叶斯(垃圾邮件分类)
相关推荐
-
AI过滤“垃圾” 让用户快速找到有价值的邮件
虽然我们或多或少还是会看到垃圾邮件,但在机器学习算法的强大支持之下,大多数垃圾邮件已经被从收件箱中直接清除. 来源丨The Next Web 编译丨科技行者 目前,全球每天发出的3000亿封电子邮件中 ...
-
R机器学习:朴素贝叶斯与支持向量机的原理与实现
今天要给大家介绍的依然是两个分类算法,The naive Bayes and support vector machine (SVM),两个算法的原理有些许不同,不过还是放一篇文章中吧,毕竟我的文章都 ...
-
温州大学《机器学习》课程课件和视频(四)朴素贝叶斯
这学期我给研一同学上机器学习课,接下来,我会陆续分享下我上课用的的课件. 下载地址: https://github.com/fengdu78/WZU-machine-learning-course 后 ...
-
第116天:机器学习算法之朴素贝叶斯理论
朴素贝叶斯(Naive Bayesian Mode,NBM) 贝叶斯由来 贝叶斯是由英国学者托马斯·贝叶斯 提出的一种纳推理的理论,后来发展为一种系统的统计推断方法.被称为贝叶斯方法. 朴素贝叶斯 朴 ...
-
机器学习算法(二): 朴素贝叶斯(Naive Bayes)
机器学习算法(二): 朴素贝叶斯(Naive Bayes)
-
朴素贝叶斯:基于概率论的分类模型
朴素贝叶斯是建立在贝叶斯定理上的一种分类模型,贝叶斯定理是条件概率的一种计算方式,公式如下 通过比较不同事件发生的概率,选取概率大的事件作为最终的分类.在朴素贝叶斯中, 为了简化计算,假设各个特征之间 ...
-
朴素贝叶斯算法原理及实现
朴素贝叶斯算法简单高效,在处理分类问题上,是应该首先考虑的方法之一. 1.准备知识 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类. 这个定理解决了现实生活里经常遇到 ...
-
【NLP】经典分类模型朴素贝叶斯解读
贝叶斯分类器在早期的自然语言处理任务中有着较多实际的应用,例如大部分的垃圾邮件处理都是用的贝叶斯分类器.贝叶斯分类器的理论对于理解后续的NLP模型有很大的进益,感兴趣的小伙伴一定要好好看看,本文会详细 ...
-
条件概率,贝叶斯,朴素贝叶斯详解(吸毒者案例,吸烟者案列,抛硬币问题,文本喜好问题)
条件概率 先要从条件概率讲起,条件概率,一般记作P(A|B),意思是当B事件发生时,A事件发生的概率.其定义为 其中 P ( A ∩ B ) P ( A ∩ B ) P ( A ∩ B ) P ( A ...
-
ML之NB:朴素贝叶斯Naive Bayesian算法的简介、应用、经典案例之详细攻略
ML之NB:朴素贝叶斯Naive Bayesian算法的简介.应用.经典案例之详细攻略 朴素贝叶斯Naive Bayesian算法的简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.朴素 ...