一年六篇顶会的清华大神提出Fastformer:史上最快、效果最好的Transformer
相关推荐
-
Self-Attention真的是必要的吗?微软&中科大提出Sparse MLP,降低计算量的同时提升性能!
▊ 写在前面 Transformer由于其强大的建模能力,目前在计算机视觉领域占据了重要的地位.在这项工作中,作者探究了Transformer的自注意(Self-Attention)模块是否是其实现图 ...
-
用Transformer进行图像语义分割,性能超最先进的卷积方法!
重磅干货,第一时间送达 丰色 发自 凹非寺 报道 | 量子位 正如大家所知,在进行图像语义分割时,图像被编码成一系列补丁后往往很模糊,需要借助上下文信息才能被正确分割. 因此上下文建模对图像语义分割的 ...
-
DeepMind提出Transformer新变体:∞-former:任意长度上下文!无限长期记忆
AI/CV重磅干货,第一时间送达 CVer 一个专注侃侃计算机视觉方向的公众号.计算机视觉.图像处理.机器学习.深度学习.C/C++.Python.诗和远方等. 214篇原创内容 Official A ...
-
超越Swin,Transformer屠榜三大视觉任务!微软推出新作:Focal Self-Attention
作者丨小马 编辑丨极市平台 极市导读 本文提出了Focal Self-Attention,对当前token周围的区域进行细粒度的关注,对离当前token较远的区域进行粗粒度的关注,用这样的方式来更加有 ...
-
Performer:用随机投影将Attention的复杂度线性化
©PaperWeekly 原创 · 作者|苏剑林 单位|追一科技 研究方向|NLP.神经网络 Attention 机制的 复杂度是一个老大难问题了,改变这一复杂度的思路主要有两种:一是走稀疏化的思路, ...
-
CPTR:用于图像添加主题的全Transformer网络
重磅干货,第一时间送达 小白导读 论文是学术研究的精华和未来发展的明灯.小白决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容.个人能力有限,理解难免出现偏差,建议对文章 ...
-
Fastformer:简单又好用的Transformer变体!清华&MSRA开源线性复杂度的Fastformer!
0 写在前面 Transformer是一个强大的文本理解模型.然而,由于其对输入序列长度呈二次计算复杂度,Transformer是效率是比较低下的.虽然Transformer加速有很多方法,但在长序列 ...
-
LG-Transformer:全局和局部建模Transformer结构新作
写在前面 近段时间,基于Transformer的结构在CV领域展现出了很大的应用潜力,已经逐渐掩盖了CNN的光芒.Transformer的缺点也很明显:计算复杂度和输入的特征大小呈平方的关系.因此直接 ...
-
【深度学习】Transformer长大了,它的兄弟姐妹们呢?(含Transformers超细节知识点...
最近复旦放出了一篇各种Transformer的变体的综述(重心放在对Transformer结构(模块级别和架构级别)改良模型的介绍),打算在空闲时间把这篇文章梳理一下: 知乎:https://zhua ...
-
一种基于Transformer解码端的高效子层压缩方法
AI TIME欢迎每一位AI爱好者的加入! 在自然语言处理(NLP)领域,基于生成词向量的BERT算法由于其优秀的性能被关注.其中BERT算法最重要的部分便是Transformer.加速Transfo ...
-
剑桥三星AI中心提出“X-ViT”:基于时空混合attention的视频Transformer,大幅度降低计算复杂度
▊ 写在前面 本文介绍了利用Transformer进行的视频识别问题.最近Transformer在视频识别领域的尝试在识别精度方面展现出了非常不错的结果,但在许多情况下,由于时间维度的额外建模,会导致 ...
-
NLP预训练家族 | Transformer-XL及其进化XLNet
NewBeeNLP 永远有料,永远有趣 194篇原创内容 公众号 最近又重新读了Transformer-XL和XLNet的论文和代码,又有很多新的感悟.其中,要想搞懂XLNet的同学一定要首先明白Tr ...
-
邱锡鹏,这是Transformer最全综述
机器之心报道 自 2017 年 6 月谷歌发布论文<Attention is All You Need>后,Transformer 架构为整个 NLP 领域带来了极大的惊喜.在诞生至今仅仅 ...
-
ICCV2021 MIT-IBM沃森开源CrossViT:Transformer走向多分支、多尺度
详细信息如下: 论文链接:https://arxiv.org/abs/2103.14899 项目链接:https://github.com/IBM/CrossViT 导言: 与卷积神经网络相比,最近出 ...