深度学习、生成对抗、Pytorch优秀教材推荐
相关推荐
-
DL之DNN优化技术:利用Dropout(简介、使用、应用)优化方法提高DNN模型的性能
DL之DNN优化技术:利用Dropout(简介.入门.使用)优化方法提高DNN模型的性能 Dropout简介 随机失活(dropout)是对具有深度结构的人工神经网络进行优化的方法,在学习过程中通过将 ...
-
DL:深度学习(神经网络)的简介、基础知识(神经元/感知机、训练策略、预测原理)、算法分类、经典案例应用之详细攻略
DL:深度学习(神经网络)的简介.基础知识(神经元/感知机.训练策略.预测原理).算法分类.经典案例应用之详细攻略 深度学习(神经网络)的简介 深度学习(Deep Learning, DL)或阶层学习 ...
-
DL:深度学习模型概览(包括DNN、CNN、RNN等)的简介、网络结构简介、使用场景对比之详细攻略
DL:神经网络所有模型(包括DNN.CNN.RNN等)的简介(概览).网络结构简介.使用场景对比之详细攻略 神经网络所有模型的简介及其总结 FF[前馈神经网络]和 RNN[循环神经网络]是相对的概念. ...
-
我不是药神,AI才是
一鸣网7月12日前沿观察(记者|谢东霞)昨天,<我不是药神>票房已经突破18亿,很多人在影院哭完之后,开始骂专利药不顾人性命,定价昂贵.可也有人表示专利药收取高额费用,才能投入更多资金更好 ...
-
DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神经网络的工作原理
DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神经网络的工作原理 BP类神经网络理解 1.BP算法 1.信号正向传播FP 2.误差反向传播BP+ ...
-
DL之DNN优化技术:利用Batch Normalization(简介、入门、使用)优化方法提高DNN模型的性能
DL之DNN优化技术:利用Batch Normalization优化方法提高DNN模型的性能 Batch Normalization简介 1.Batch Norm的反向传播的推导有些复杂,但是可借助于 ...
-
训练数据较少时如何生成更多的数据
在图像和物体识别方面,计算机表现优于人类. 像Google和Microsoft这样的大公司在图像识别方面已经超越了人类基准[1,2].平均而言,人类大约有5%的时间在图像识别任务上犯了错误.截至201 ...
-
DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介、代码实现、代码调参之详细攻略
DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介.代码实现.代码调参之详细攻略 GD算法的简介 GD算法,是求解非线性无约束优化问题的基本方法,最小化损失函数的一种常用的一阶优化方法.如 ...
-
DL之ANN/DNN: 人工神经网络ANN/DNN深度神经网络算法的简介、应用、经典案例之详细攻略
DL之ANN/DNN: 人工神经网络ANN/DNN深度神经网络算法的简介.应用.经典案例之详细攻略 相关文章 DL:深度学习(神经网络)的简介.基础知识(神经元/感知机.训练策略.预测原理).算法分类 ...
-
中文版!学习 TensorFlow、PyTorch、机器学习四件套!(附免费下载)
学习深度学习以及面试肯定离不开下面的4个重要的资料,更何况是中文版! 获得方式: 1.扫码下方二维码,关注公众号「互联网达人圈」 2.回复「四件套」(建议复制)即可获取