DL之DNN优化技术:利用Dropout(简介、使用、应用)优化方法提高DNN模型的性能
相关推荐
-
基于改进CNN 的红外目标识别方法研究*
0 引言 红外成像自动目标识别[1]基于红外辐射成像方式能够使武器系统对指定目标进行自动追踪.捕获和识别,实现对目标指向的正确导引和精确打击,是红外导引头精确制导武器的核心技术之一. 常用的传统目标识 ...
-
解决overfitting的方法
解决overfitting的方法 Dropout, regularization, batch normalizatin. 但是要注意dropout只在训练的时候用,让一部分神经元随机失活. Batc ...
-
【深度学习】收藏|神经网络调试Checklist
前言 作为一名每天与神经网络训练/测试打交道的同学,是否经常会遇到以下这几个问题,时常怀疑人生: 怎么肥事,训练正常着呢,咋效果这么差呢? 嗯..再等等是不是loss就更低了.啊?明明loss更低了呀 ...
-
DL之DNN优化技术:利用Batch Normalization(简介、入门、使用)优化方法提高DNN模型的性能
DL之DNN优化技术:利用Batch Normalization优化方法提高DNN模型的性能 Batch Normalization简介 1.Batch Norm的反向传播的推导有些复杂,但是可借助于 ...
-
传统夯土技术 | 利用「弹性形式夯土」方法盖土袋房入门教程
回复"教程",送你一篇特别的推送 最近几年,中国传统的实体经济,受到互联网和高科技的冲击,举步维艰.很多行业都充满了各种泡沫,只是还未捅破.大环境并不景气,然而房地产业却依旧莫名的 ...
-
DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介、代码实现、代码调参之详细攻略
DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介.代码实现.代码调参之详细攻略 GD算法的简介 GD算法,是求解非线性无约束优化问题的基本方法,最小化损失函数的一种常用的一阶优化方法.如 ...
-
DL之DNN优化技术:神经网络算法简介之数据训练优化【mini-batch技术+etc】
DL之DNN优化技术:神经网络算法简介之数据训练优化[mini-batch技术+etc] 1.mini-batch技术 输出结果 实现代码 # coding: utf-8 #DL之mini-batch ...
-
DL之CNN优化技术:卷积神经网络算法简介之特有的优化技术及其代码实现——im2col技术等技术
DL之CNN优化技术:卷积神经网络算法简介之特有的优化技术及其代码实现--im2col技术等技术 im2col技术 im2col简介 1.im2col 的示意图 2.将滤波器的应用区域从头开始依次横向 ...
-
DL之DNN优化技术:DNN优化器的参数优化—更新参数的四种最优化方法(SGD/Momentum/AdaGrad/Adam)的案例理解、图表可视化比较
DL之DNN优化技术:DNN优化器的参数优化-更新参数的四种最优化方法(SGD/Momentum/AdaGrad/Adam)的案例理解.图表可视化比较 四种最优化方法简介 DL之DNN优化技术:神经网 ...
-
DL之DNN优化技术:自定义MultiLayerNet【5*100+ReLU】对MNIST数据集训练进而比较三种权重初始值(Xavier参数初始化、He参数初始化)性能差异
DL之DNN优化技术:自定义MultiLayerNet[5*100+ReLU]对MNIST数据集训练进而比较三种权重初始值(Xavier参数初始化.He参数初始化)性能差异 导读 #思路:观察不同的权 ...
-
DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程
DL之DNN优化技术:自定义MultiLayerNetExtend算法(BN层使用/不使用+权重初始值不同)对Mnist数据集训练评估学习过程 相关文章: DL之DNN优化技术:采用三种激活函数(si ...
-
DL之ANN/DNN: 人工神经网络ANN/DNN深度神经网络算法的简介、应用、经典案例之详细攻略
DL之ANN/DNN: 人工神经网络ANN/DNN深度神经网络算法的简介.应用.经典案例之详细攻略 相关文章 DL:深度学习(神经网络)的简介.基础知识(神经元/感知机.训练策略.预测原理).算法分类 ...