DL之CNN优化技术:卷积神经网络算法简介之特有的优化技术及其代码实现——im2col技术等技术
相关推荐
-
UDVD:适用于可变降质类型的通用图像超分,附参考代码
加入极市专业CV交流群,与 10000+来自港科大.北大.清华.中科院.CMU.腾讯.百度 等名校名企视觉开发者互动交流! 同时提供每月大咖直播分享.真实项目需求对接.干货资讯汇总,行业技术交流.关注 ...
-
CUDA-GDB安装+环境配置
在GPU上开发大规模并行应用程序时,需要一个调试器,GDB调试器能够处理系统中每个GPU上同时运行的数千个线程.CUDA-GDB提供了无缝的调试体验,可以同时调试应用程序的CPU和GPU部分. 就像G ...
-
基于TensorFlow的FM实现
在之前的文章「从矩阵分解到FM的演进.FM如何用于召回和排序以及实现说明」中介绍了FM算法的演化史,主要是从协同过滤CF到矩阵分解MF,再到线性模型LR,最后介绍了FM用于召回和精排的情况.这一篇文章 ...
-
DL之DNN优化技术:神经网络算法简介之数据训练优化【mini-batch技术+etc】
DL之DNN优化技术:神经网络算法简介之数据训练优化[mini-batch技术+etc] 1.mini-batch技术 输出结果 实现代码 # coding: utf-8 #DL之mini-batch ...
-
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测 输出结果 1.10.0 Size of: - Trai ...
-
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测 输出结果 下边两张图对应查看,可知,数字0有965个是 ...
-
DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介、代码实现、代码调参之详细攻略
DL之DNN优化技术:神经网络算法简介之GD/SGD算法的简介.代码实现.代码调参之详细攻略 GD算法的简介 GD算法,是求解非线性无约束优化问题的基本方法,最小化损失函数的一种常用的一阶优化方法.如 ...
-
DL之CNN:卷积神经网络算法简介之原理简介——CNN网络的3D可视化(LeNet-5为例可视化)
DL之CNN:卷积神经网络算法简介之原理简介--CNN网络的3D可视化(LeNet-5为例可视化) CNN网络的3D可视化 3D可视化地址:http://scs.ryerson.ca/~aharley ...
-
DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神经网络的工作原理
DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神经网络的工作原理 BP类神经网络理解 1.BP算法 1.信号正向传播FP 2.误差反向传播BP+ ...
-
DL之CNN可视化:利用SimpleConvNet算法【3层,im2col优化】基于mnist数据集训练并对卷积层输出进行可视化
DL之CNN可视化:利用SimpleConvNet算法[3层,im2col优化]基于mnist数据集训练并对卷积层输出进行可视化 导读 利用SimpleConvNet算法基于mnist数据集训练并对卷 ...
-
DL框架之MXNet :神经网络算法简介之MXNet 常见使用方法总结(神经网络DNN、CNN、RNN算法)之详细攻略(个人使用)
DL框架之MXNet :神经网络算法简介之MXNet 常见使用方法总结(神经网络DNN.CNN.RNN算法)之详细攻略(个人使用) 相关文章 DL框架之MXNet :深度学习框架之MXNet 的简介. ...
-
DL之BP:神经网络算法简介之BP算法简介(链式法则/计算图解释)、案例应用之详细攻略
DL之BP:神经网络算法简介之BP算法简介(链式法则/计算图解释).案例应用之详细攻略相关文章:DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神 ...
