【信息抽取】NLP中关系抽取的概念,发展及其展望

(0)

相关推荐

  • NLP任务增强:通过引入外部知识来提供额外信息

    NewBeeNLP 永远有料,永远有趣 186篇原创内容 公众号 0.前言 NLP任务中,常见的做法是根据「当前输入」进行建模,进而设计出我们的模型,通常用到的信息只有「当前局部的信息」. 这和人类最 ...

  • 金融知识图谱的构建与应用

    编辑整理:朱瑞杰 出品平台:DataFunTalk.AI启蒙者 导读:金融机构在过去积累了大量的数据,包括结构化数据和非结构化数据.如何利用这些数据来构建金融知识图谱,并将构造好的知识图谱应用到具体的 ...

  • 知识图谱的系统工程观

    知识图谱的系统工程观

  • NeurIPS'20 | 通过文本压缩,让BERT支持长文本

    这是今年清华大学及阿里巴巴发表在NIPS 2020上的一篇论文<CogLTX: Applying BERT to Long Texts>,介绍了如何优雅地使用bert处理长文本.作者同时开 ...

  • ACL 2021 | 丁香园知识增强预训练模型

    背景 使用预训练模型已经成为大部分NLP任务的标配,因此近年来有大量的工作围绕着如何提高预训练模型的质量.其中,引入外部知识无疑是最热门的话题之一.丁香园NLP联合华师大何晓丰老师团队,在今年的ACL ...

  • 远程监督在关系抽取中的应用

    什么是关系抽取 知识就是力量.使人类及机器能够更好地利用知识是提升工作效率及实现人工智能的关键所在,也催生了包括知识表示.知识推理在内的一系列研究.作为一切对知识的利用的基础,我们首先要获取知识,即知 ...

  • 常识性概念图谱建设以及在美团场景中的应用

    常识性概念图谱,是围绕常识性概念建立的实体以及实体之间的关系,同时侧重美团的场景构建的一类知识图谱.本文介绍了美团常识性概念图谱构建的Schema,图谱建设中遇到的挑战以及建设过程中的算法实践,最后介 ...

  • ACL 2019论文| 揭秘认知图谱!从多跳阅读理解问答开始

    "机器的阅读理解与问答"一直以来被认为是"自然语言理解(NLU)"的核心问题之一,随着BERT等模型的兴起,单段落的简单阅读理解任务取得了重大突破:研究者将目光 ...

  • “中文版GPT-3”来了:会算术、可续写红楼梦,用64张V100训练了3周

      磐创AI分享   来源 | 量子位(QbitAI) 编辑 | 晓查.发自.凹非寺 今年,OpenAI推出的自然语言模型GPT-3引起了巨大的轰动. 这是迄今为止最大的NLP模型,包含1750亿参数 ...

  • 深度学习基本概念|自然语言处理

    自然语言处理是神经网络的经典应用领域之一,所谓自然语言处理,就是让机器理解人类的语言,英文为Natural Language Processing, 简称NLP,是人工智能的一个重要方向,目前生活中已 ...

  • 阿里医疗NLP实践与思考

    编辑整理:张文嘉 中日友好医院 出品平台:DataFunTalk 导读:NLP技术在智慧医疗领域有着越来越多的应用场景,本文将从数据.算法.知识3个层面带来阿里在医疗NLP领域的工作.遇到的问题以及相 ...

  • ENRIE:知识图谱与BERT相结合,为语言模型赋能助力

    来自:朴素人工智能 感谢清华大学自然语言处理实验室对预训练语言模型架构的梳理,我们将沿此脉络前行,探索预训练语言模型的前沿技术,红框中为已介绍的文章,绿框中为本期介绍的模型,欢迎大家留言讨论交流. E ...