NLP任务增强:通过引入外部知识来提供额外信息
相关推荐
-
【信息抽取】如何使用BERT进行关系抽取
事物.概念之间的关系是人类知识中非常重要的一个部分,但是他们通常隐藏在海量的非结构文本中.为了从文本中抽取这些关系事实,从早期的模式匹配到近年的神经网络,大量的研究在多年前就已经展开. 然而,随着互联 ...
-
基于图模型的智能推荐算法学习笔记
一.基于知识图谱的智能推荐 以知识图谱作为边信息生成推荐的价值在于:一方面可以提供更准确的推荐:另一方面可以对推荐结果进行解释. 知识图谱由实体和关系组成(以电影推荐为例):实体(用户.电影.演员.导 ...
-
论文浅尝 - CIKM2020 | 用于推荐系统的多模态知识图谱
论文笔记整理:王琰,东南大学硕士. 来源:CIKM 2020 链接:https://doi.org/10.1145/3340531.3411947 研究背景与任务描述 为了解决推荐系统中的数据稀疏和冷 ...
-
NAACL 2019 论文 | 基于胶囊网络的知识图谱表示学习
知识图谱表示学习(Knowledge Graph Embedding)是将知识图谱中的实体和关系等表示为低维的向量空间中的向量,这些向量蕴含了实体和关系的复杂信息,有利于计算机进行计算和推理. 论文背 ...
-
基于嵌入表示的网络实体对齐方法进展概述
网络实体对齐是指给定两个网络,把两个网络中等价的实体合并.实体对齐在很多领域都有重要应用,比如,跨平台社交网络的用户对齐可以用于用户画像.用户兴趣挖掘,跨语言知识图谱的实体对齐可以辅助机器翻译.跨语言 ...
-
学习|知识图谱学习路线
学习|知识图谱学习路线
-
浅析深度学习在实体识别和关系抽取中的应用
选择"星标"公众号 重磅干货,第一时间送达! 命名实体识别 命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出其 ...
-
【每周NLP论文推荐】 NLP中命名实体识别从机器学习到深度学习的代表性研究
NER是自然语言处理中相对比较基础的任务,但却是非常重要的任务.在NLP中,大部分的任务都需要NER的能力,例如,聊天机器人中,需要NER来提取实体完成对用户输入的理解:在信息提取任务中,需要提取相应 ...
-
【信息抽取】NLP中关系抽取的概念,发展及其展望
事物.概念之间的关系是人类知识中非常重要的一个部分,但是他们通常隐藏在海量的非结构文本中.为了从文本中抽取这些关系事实,从早期的模式匹配到近年的神经网络,大量的研究在多年前就已经展开. 然而,随着互联 ...
-
【NLP-NER】命名实体识别中最常用的两种深度学习模型
命名实体识别(Named Entity Recognition,NER)是NLP中一项非常基础的任务.NER是信息提取.问答系统.句法分析.机器翻译等众多NLP任务的重要基础工具. 上一期我们介绍了N ...