浅析深度学习在实体识别和关系抽取中的应用
相关推荐
-
【NLP】详聊NLP中的阅读理解(MRC)
机器阅读理解,笔者认为他是NLP中最有意思的任务了.机器阅读一份文档之后,可以"理解"其中的内容,并可以回答关于这份文档的问题.听上去,有一种很强的"人工智能" ...
-
【文本信息抽取与结构化】深入了解关系抽取你需要知道的东西
常常在想,自然语言处理到底在做的是一件什么样的事情?到目前为止,我所接触到的NLP其实都是在做一件事情,即将自然语言转化为一种计算机能够理解的形式.这一点在知识图谱.信息抽取.文本摘要这些任务中格外明 ...
-
【每周NLP论文推荐】 NLP中命名实体识别从机器学习到深度学习的代表性研究
NER是自然语言处理中相对比较基础的任务,但却是非常重要的任务.在NLP中,大部分的任务都需要NER的能力,例如,聊天机器人中,需要NER来提取实体完成对用户输入的理解:在信息提取任务中,需要提取相应 ...
-
ACL2021 | 一种巧妙解决NER覆盖和不连续问题的方法
论文:A Span-Based Model for Joint Overlapped and Discontinuous Named Entity Recognition 链接:https://acl ...
-
任务方案思考:序列标注(NER)篇
0 小系列初衷 计划篇章: (已完成)文本分类篇.针对NLP文本分类任务. 序列标注(NER)篇.针对命名实体识别.序列标注任务. 文本匹配篇.针对语义相似度计算.向量匹配等问题. 人工特征学习篇.针 ...
-
康孟珍副研究员团队:基于语义融合与模型蒸馏的农业实体识别(2021年第1期)
. 引用格式:李亮德, 王秀娟, 康孟珍, 华净, 樊梦涵. 基于语义融合与模型蒸馏的农业实体识别[J]. 智慧农业(中英文), 2021, 3 (1): 118-128. LI Liangde, W ...
-
ENRIE:知识图谱与BERT相结合,为语言模型赋能助力
来自:朴素人工智能 感谢清华大学自然语言处理实验室对预训练语言模型架构的梳理,我们将沿此脉络前行,探索预训练语言模型的前沿技术,红框中为已介绍的文章,绿框中为本期介绍的模型,欢迎大家留言讨论交流. E ...
-
中文NER碎碎念—聊聊词汇增强与实体嵌套
来自:丁香园大数据 前言 得益于BERT的加持,Encoder搭配CRF的结构在中文NER上通常都有不错的表现,而且BERT使用方便,可以迅速微调上线特定服务:在好的基准条件下,我们也能把精力放在更细 ...
-
【信息抽取】介绍一种端到端的关系抽取方法
事物.概念之间的关系是人类知识中非常重要的一个部分,但是他们通常隐藏在海量的非结构文本中.为了从文本中抽取这些关系事实,从早期的模式匹配到近年的神经网络,大量的研究在多年前就已经展开. 然而,随着互联 ...
-
金融知识图谱的构建与应用
编辑整理:朱瑞杰 出品平台:DataFunTalk.AI启蒙者 导读:金融机构在过去积累了大量的数据,包括结构化数据和非结构化数据.如何利用这些数据来构建金融知识图谱,并将构造好的知识图谱应用到具体的 ...
-
Query理解在美团搜索中的应用
分享嘉宾:刘亮 美团 资深算法工程师 编辑整理:吴雪松 出品社区:DataFunTalk 导读:在过去的20年中,搜索过程中处理查询的方式以及向用户显示结果的方式已完全改变.该过程已经从仅基于文本匹配 ...
-
【NLP-NER】命名实体识别中最常用的两种深度学习模型
命名实体识别(Named Entity Recognition,NER)是NLP中一项非常基础的任务.NER是信息提取.问答系统.句法分析.机器翻译等众多NLP任务的重要基础工具. 上一期我们介绍了N ...
-
NLP任务增强:通过引入外部知识来提供额外信息
NewBeeNLP 永远有料,永远有趣 186篇原创内容 公众号 0.前言 NLP任务中,常见的做法是根据「当前输入」进行建模,进而设计出我们的模型,通常用到的信息只有「当前局部的信息」. 这和人类最 ...
-
【NLP-NER】什么是命名实体识别?
命名实体识别(Named Entity Recognition,NER)是NLP中一项非常基础的任务.NER是信息提取.问答系统.句法分析.机器翻译等众多NLP任务的重要基础工具. 命名实体识别的准确 ...