【最新刷榜】层次化视觉Transformer来啦!性能大幅优于DeiT、ViT和EfficientN...
相关推荐
-
MLP三大工作超详细解读:why do we need?
作者|科技猛兽 审稿丨邓富城 编辑丨极市平台 极市导读 本文作者详细介绍了最近火爆CV圈三项关于MLP的工作. >>加入极市CV技术交流群,走在计算机视觉的最前沿 专栏目录:https:/ ...
-
你仅需要看一个序列!YOLOS:重新思考Transformer的泛化性能
作者丨happy 审稿丨邓富城 编辑丨极市平台 极市导读 本文是华科&地平线关于Transformer的迁移学习.泛化性能方面的深度思考.重点揭示了Transformer的迁移学习能力与泛化性 ...
-
搞懂 Vision Transformer 原理和代码,看这篇技术综述就够了(四)
作者丨科技猛兽 审稿|邓富城 编辑丨极市平台 极市导读 本文为详细解读Vision Transformer的第四篇,主要包括2种vision Transformer的内部机制,即:1. 如何更好地利用 ...
-
超越Swin Transformer!谷歌提出了收敛更快、鲁棒性更强、性能更强的NesT
作者丨happy 审稿丨邓富城 编辑丨极市平台 极市导读 谷歌&罗格斯大学的研究员对ViT领域的分层结构设计进行了反思与探索,提出了一种简单的结构NesT,方法凭借68M参数取得了超越Swin ...
-
如何做深ViT模型?NUS、字节:引入Re-attention机制,实现强大性能
CNN 通过堆叠更多的卷积层来提高性能,而 transformer 在层次更深时会很快进入饱和.基于此,来自新加坡国立大学和字节跳动 AI Lab 的研究者引入了 Re-attention 机制,以很 ...
-
2021机器学习研究风向是啥?MLP→CNN→Transformer→MLP!
设为 "星标",重磅干货,第一时间送达! 转载自 专知 就在2月份,Transformer还横扫CV和NLP各种task.但到了5月份,似乎一切变了.近来,谷歌.清华.Facebo ...
-
CV圈杀疯了!继谷歌之后,清华、牛津等学者又发表三篇MLP相关论文,LeCun也在发声
来源:AI科技评论 本文介绍了来自牛津.清华的多位学者关于MLP的多篇论文. 5月4日,谷歌团队在arXiv上提交了一篇论文<MLP-Mixer: An all-MLP Architecture ...
-
美团提出具有「位置编码」的Transformer,性能优于ViT和DeiT
本文转载自机器之心. Transformer 跨界计算机视觉的热潮之下,有一个问题需要解决:如何像 CNN 一样直接处理不同尺寸的输入?对此,美团提出了一种新型隐式条件位置编码方法,基于该方法的 CP ...
-
Swin Transformer对CNN的降维打击
及时获取最优质的CV内容 最近Transformer的文章眼花缭乱,但是精度和速度相较于CNN而言还是差点意思,直到Swin Transformer的出现,让人感觉到了一丝丝激动,Swin Trans ...
-
计算机视觉中的Transformer
作者:Cheng He 编译:ronghuaiyang 导读 将Transformer应用到CV任务中现在越来越多了,这里整理了一些相关的进展给大家. Transformer结构已经在许多自然语言处理 ...
-
谷歌最新提出无需卷积、注意力 ,纯MLP构成的视觉架构!网友:MLP is All You Need...
当前,卷积神经网络(CNN)和基于自注意力的网络(如近来大火的 ViT)是计算机视觉领域的主流选择,但研究人员没有停止探索视觉网络架构的脚步.近日,来自谷歌大脑的研究团队(原 ViT 团队)提出了一种 ...
-
ResNet被全面超越了,是Transformer干的:依图科技开源“可大可小”T2T-ViT,轻量版优于MobileNet
作者丨Happy 审稿|邓富城 编辑丨极市平台 极市导读 又一篇Transformer来了!本文在ViT方面进行了一次突破性探索,提出了首次全面超越ResNet,甚至轻量化版本优于MobileNet系 ...
-
搞懂 Vision Transformer 原理和代码,看这篇技术综述就够了(六)
作者丨科技猛兽 编辑丨极市平台 极市导读 本文为详细解读Vision Transformer的第六篇,主要介绍了2种将卷积引入Transformer模型的方法:CvT和CeiT.>>加入极 ...
-
如何看待Transformer在CV上的应用前景,未来有可能替代CNN吗?
链接:https://www.zhihu.com/question/437495132 编辑:深度学习与计算机视觉 声明:仅做学术分享,侵删 目前已经有基于Transformer在三大图像问题上的应用 ...
-
MLP再添新砖,Facebook入局!ResMLP:完全建立在MLP上的图像分类架构
作者丨happy 审稿丨邓富城 编辑丨极市平台 极市导读 继谷歌MLP-Mixer引爆CV圈后,各高校也纷纷入场,facebook也不例外,在今天提出一种完全建立在MLP上的架构ResMLP用于图像分 ...
-
用Pytorch轻松实现28个视觉Transformer,开源库 timm 了解一下!(附代码解读)
作者丨科技猛兽 审稿丨邓富城 编辑丨极市平台 极市导读 本文将介绍一个优秀的PyTorch开源库--timm库,并对其中的vision transformer.py代码进行了详细解读.>> ...
-
搞懂Vision Transformer 原理和代码,看这篇技术综述就够了(三)
作者丨科技猛兽 来源丨极市平台 审核丨邓富城 极市导读 本文为详细解读Vision Transformer的第三篇,主要解读了两篇关于Transformer在识别任务上的演进的文章:DeiT与VT.它 ...
-
谷歌研究员:Transformer那些有趣的特性
作者丨ChaucerG 来源丨集智书童 编辑丨极市平台 极市导读 本文发现了Transformer的一些重要特性,如Transformer对严重的遮挡,扰动和域偏移具有很高的鲁棒性.与CNN相比,Vi ...
-
2021年了,Transformer有可能替代CNN吗?未来有哪些研究方向?
Transformer 的跨界之旅,从 2020 延续到了 2021. 2020 年 5 月,Facebook AI 推出了 Detection Transformer,用于目标检测和全景分割.这是第 ...
-
来自Transformer的降维打击:ReID各项任务全面领先,阿里&浙大提出TransReID
作者丨Happy 审稿丨邓富城 编辑丨极市平台 极市导读 Transformer在ReID领域的第一次全面探索!为更好的利用ReID的数据特性与Transformer的信息嵌入特征,本文提出了两种模块 ...
-
各类Transformer都得稍逊一筹,LV-ViT:探索多个用于提升ViT性能的高效Trick
作者丨happy 审稿丨邓富城 编辑丨极市平台 极市导读 本文探索了用于提升ViT性能的各种训练技巧.通过一系列实验对比.改进与组合,本文所提方案取得了SOTA方案,超越了EfficientNet.T ...