计算机视觉中的Transformer
相关推荐
-
还在用ViT的16x16 Patch分割方法吗?中科院自动化所提出Deformable Patch-based方法,涨点显著!
0 写在前面 目前,Transformer在计算机视觉方面取得了巨大的成功,但是如何在图像中更加有效的分割patch仍然是一个问题.现有的方法通常是将图片分成多个固定大小的patch,然后进行embe ...
-
用Transformer进行图像语义分割,性能超最先进的卷积方法!
重磅干货,第一时间送达 丰色 发自 凹非寺 报道 | 量子位 正如大家所知,在进行图像语义分割时,图像被编码成一系列补丁后往往很模糊,需要借助上下文信息才能被正确分割. 因此上下文建模对图像语义分割的 ...
-
2021机器学习研究风向是啥?MLP→CNN→Transformer→MLP!
设为 "星标",重磅干货,第一时间送达! 转载自 专知 就在2月份,Transformer还横扫CV和NLP各种task.但到了5月份,似乎一切变了.近来,谷歌.清华.Facebo ...
-
UP-DETR:收敛更快!精度更高!华南理工&微信开源无监督预训练目标检测模型
0 写在前面 基于Transformer编码器-解码器结构的DETR达到了与Faster R-CNN类似的性能.受预训练Transformer在自然语言处理方面取得巨大成功的启发,作者提出了一种基于r ...
-
ResNet被全面超越了,是Transformer干的:依图科技开源“可大可小”T2T-ViT,轻量版优于MobileNet
作者丨Happy 审稿|邓富城 编辑丨极市平台 极市导读 又一篇Transformer来了!本文在ViT方面进行了一次突破性探索,提出了首次全面超越ResNet,甚至轻量化版本优于MobileNet系 ...
-
谷歌最新提出无需卷积、注意力 ,纯MLP构成的视觉架构!网友:MLP is All You Need...
当前,卷积神经网络(CNN)和基于自注意力的网络(如近来大火的 ViT)是计算机视觉领域的主流选择,但研究人员没有停止探索视觉网络架构的脚步.近日,来自谷歌大脑的研究团队(原 ViT 团队)提出了一种 ...
-
ICCV2021 MIT-IBM沃森开源CrossViT:Transformer走向多分支、多尺度
详细信息如下: 论文链接:https://arxiv.org/abs/2103.14899 项目链接:https://github.com/IBM/CrossViT 导言: 与卷积神经网络相比,最近出 ...
-
NeurIPS2021-《YOLOS》-ViT现在可以做目标检测任务啦!华科提出目标检测新方法YOLOS
NeurIPS2021-《YOLOS》-ViT现在可以做目标检测任务啦!华科提出目标检测新方法YOLOS
-
Self-Attention真的是必要的吗?微软&中科大提出Sparse MLP,降低计算量的同时提升性能!
▊ 写在前面 Transformer由于其强大的建模能力,目前在计算机视觉领域占据了重要的地位.在这项工作中,作者探究了Transformer的自注意(Self-Attention)模块是否是其实现图 ...
-
最强辅助Visualizer:简化你的Vision Transformer可视化!
Visualizer 是一个辅助深度学习模型中 Attention 模块可视化的小工具,主要功能是帮助取出嵌套在模型深处的 Attention Map. Vision Transformer 如今已经 ...
-
ICCV2021-PiT-池化操作不是CNN的专属,ViT说:“我也可以”;南大提出池化视觉Transformer(PiT)
详细信息如下: 论文链接:https://arxiv.org/abs/2103.16302 项目链接:https://github.com/naver-ai/pit 导言: Vision Transf ...
-
BERT新转变:面向视觉基础进行预训练| NeurIPS 2019论文解读
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks 论文作 ...
-
2021年了,Transformer有可能替代CNN吗?未来有哪些研究方向?
Transformer 的跨界之旅,从 2020 延续到了 2021. 2020 年 5 月,Facebook AI 推出了 Detection Transformer,用于目标检测和全景分割.这是第 ...
-
各类Transformer都得稍逊一筹,LV-ViT:探索多个用于提升ViT性能的高效Trick
作者丨happy 审稿丨邓富城 编辑丨极市平台 极市导读 本文探索了用于提升ViT性能的各种训练技巧.通过一系列实验对比.改进与组合,本文所提方案取得了SOTA方案,超越了EfficientNet.T ...
-
又一篇视觉Transformer综述来了!
重磅干货,第一时间送达 最近 Transformer在CV领域真的'杀疯了',很多CV垂直方向出现了不少工作.其中非常有代表性就是:DETR.ViT等. CVer上周第一时间推送了:华为&北大 ...
-
CV领域,Transformer在未来有可能替代CNN吗?
在这个大火的阶段,确实值得我们反思一下,self-attention和CNN结构相比,到底有什么联系与区别,两者在相同配置下有什么样的差距? 尤其近期一些工作在Transformer结构中引入loca ...
-
一文看尽2020全年AI技术突破
晓查 蕾师师 发自 凹非寺 量子位 报道 | 公众号 QbitAI 2020年在紧张的防疫工作中悄然过去.这一年,人工智能却从来没有停下前进的脚步. 这一年人工智能行业有哪些新进展?为全球疫情做了哪些 ...
-
模型跨界成潮流OpenAI用GPT
参与:魔王.杜伟.小舟 图像领域的GPT模型终于来了!OpenAI推出了用于图像分类的模型iGPT,该模型生成的特征在多个分类数据集上实现了当前SOTA性能,并且实现了良好的图像补全效果. 无监督和自 ...
-
你仅需要看一个序列!YOLOS:重新思考Transformer的泛化性能
作者丨happy 审稿丨邓富城 编辑丨极市平台 极市导读 本文是华科&地平线关于Transformer的迁移学习.泛化性能方面的深度思考.重点揭示了Transformer的迁移学习能力与泛化性 ...