谷歌最新提出无需卷积、注意力 ,纯MLP构成的视觉架构!网友:MLP is All You Need...
相关推荐
-
ResNet被全面超越了,是Transformer干的:依图科技开源“可大可小”T2T-ViT,轻量版优于MobileNet
作者丨Happy 审稿|邓富城 编辑丨极市平台 极市导读 又一篇Transformer来了!本文在ViT方面进行了一次突破性探索,提出了首次全面超越ResNet,甚至轻量化版本优于MobileNet系 ...
-
搞懂 Vision Transformer 原理和代码,看这篇技术综述就够了(六)
作者丨科技猛兽 编辑丨极市平台 极市导读 本文为详细解读Vision Transformer的第六篇,主要介绍了2种将卷积引入Transformer模型的方法:CvT和CeiT.>>加入极 ...
-
搞懂Vision Transformer 原理和代码,看这篇技术综述就够了(三)
作者丨科技猛兽 来源丨极市平台 审核丨邓富城 极市导读 本文为详细解读Vision Transformer的第三篇,主要解读了两篇关于Transformer在识别任务上的演进的文章:DeiT与VT.它 ...
-
基于深度连续融合的多传感器三维目标检测
重磅干货,第一时间送达 单眼视觉系统以低成本高性能实现令人满意的效果,但无法提供可靠的3D几何信息.双目摄像机可以提供3D几何信息,但是它们的计算成本很高,并且无法在高遮挡和无纹理的环境中可靠地工作. ...
-
MLP再添新砖,Facebook入局!ResMLP:完全建立在MLP上的图像分类架构
作者丨happy 审稿丨邓富城 编辑丨极市平台 极市导读 继谷歌MLP-Mixer引爆CV圈后,各高校也纷纷入场,facebook也不例外,在今天提出一种完全建立在MLP上的架构ResMLP用于图像分 ...
-
解决训练不稳定性,何恺明团队新作来了!自监督学习+Transformer=MoCoV3
作者丨happy 审稿丨邓富城 编辑丨极市平台 极市导读 本文是FAIR的恺明团队针对自监督学习+Transformer的一篇实证研究.针对Transformer在自监督学习框架中存在的训练不稳定问题 ...
-
GPT
编辑:贾伟 梦佳 继GPT-3的颠覆之后,即将出道的 GPT-4 会走向何方?这一问题牵动着很多人的心. 在不久前,OpenAI的联合创始人.首席科学家IIya Sutskever 曾在吴恩达编辑的 ...
-
各类Transformer都得稍逊一筹,LV-ViT:探索多个用于提升ViT性能的高效Trick
作者丨happy 审稿丨邓富城 编辑丨极市平台 极市导读 本文探索了用于提升ViT性能的各种训练技巧.通过一系列实验对比.改进与组合,本文所提方案取得了SOTA方案,超越了EfficientNet.T ...
-
美团提出具有「位置编码」的Transformer,性能优于ViT和DeiT
本文转载自机器之心. Transformer 跨界计算机视觉的热潮之下,有一个问题需要解决:如何像 CNN 一样直接处理不同尺寸的输入?对此,美团提出了一种新型隐式条件位置编码方法,基于该方法的 CP ...
-
CV圈杀疯了!继谷歌之后,清华、牛津等学者又发表三篇MLP相关论文,LeCun也在发声
来源:AI科技评论 本文介绍了来自牛津.清华的多位学者关于MLP的多篇论文. 5月4日,谷歌团队在arXiv上提交了一篇论文<MLP-Mixer: An all-MLP Architecture ...
-
Dropout也能自动化了,谷歌大神Quoc Le等人利用强化学习自动找寻模型专用Dropout
阅读大概需要5分钟 Follow小博主,每天更新前沿干货 在机器学习领域里,Dropout 是一个较为重要的方法,其可以暂时丢弃一部分神经元及其连接,进而防止过拟合,同时指数级.高效地连接不同网络架构 ...
-
【模型解读】network in network中的1*1卷积,你懂了吗
02 这是深度学习模型解读第二篇,本篇我们将介绍Network In Network. 李健 武汉大学硕士,研究方向为机器学习与计算机视觉 作者 | 李健(微信号:lijian05170517) 编辑 ...
-
计算机视觉中的Transformer
作者:Cheng He 编译:ronghuaiyang 导读 将Transformer应用到CV任务中现在越来越多了,这里整理了一些相关的进展给大家. Transformer结构已经在许多自然语言处理 ...
-
【最新刷榜】层次化视觉Transformer来啦!性能大幅优于DeiT、ViT和EfficientN...
[导读]本文主要介绍最新TransFormer成果,目前Swin Transformer在各大CV任务上,实现了SOTA的性能,在目标检测任务上刷到58.7 AP(目前第一)!实例分割刷到51.1 M ...
-
搞懂 Vision Transformer 原理和代码,看这篇技术综述就够了(八)
作者丨科技猛兽 审稿丨邓富城 编辑丨极市平台 极市导读 本文为详细解读Vision Transformer的第八篇,本文主要介绍了两个用以加深Transformer模型的工作:DeepViT.CaiT ...
-
MLP三大工作超详细解读:why do we need?
作者|科技猛兽 审稿丨邓富城 编辑丨极市平台 极市导读 本文作者详细介绍了最近火爆CV圈三项关于MLP的工作. >>加入极市CV技术交流群,走在计算机视觉的最前沿 专栏目录:https:/ ...