解决训练不稳定性,何恺明团队新作来了!自监督学习+Transformer=MoCoV3
相关推荐
-
2021机器学习研究风向是啥?MLP→CNN→Transformer→MLP!
设为 "星标",重磅干货,第一时间送达! 转载自 专知 就在2月份,Transformer还横扫CV和NLP各种task.但到了5月份,似乎一切变了.近来,谷歌.清华.Facebo ...
-
利用边缘监督信息加速Mask R-CNN实例分割训练
算法思想 作者通过观察Mask R-CNN训练前期输出的预测图像,发现很多时候边缘都不在点上,很显然,神经网络在走弯路. 请看下面的例子: 这是Mask R-CNN深度网络训练前期的一些预测的Mask ...
-
如何做深ViT模型?NUS、字节:引入Re-attention机制,实现强大性能
CNN 通过堆叠更多的卷积层来提高性能,而 transformer 在层次更深时会很快进入饱和.基于此,来自新加坡国立大学和字节跳动 AI Lab 的研究者引入了 Re-attention 机制,以很 ...
-
GPT-2:OpenAI的NLP商业化野望
自然语言处理(NLP)技术正在生活的方方面面改变着我们的生活. 客厅的智能音箱在跟你每天的对话中飞速进步,甚至开始跟你"插科打诨"来适应你的爱好习惯. 电商客服总是能在第一时间回复 ...
-
计算机视觉中的Transformer
作者:Cheng He 编译:ronghuaiyang 导读 将Transformer应用到CV任务中现在越来越多了,这里整理了一些相关的进展给大家. Transformer结构已经在许多自然语言处理 ...
-
推理怎么又快又稳?且看我FastBERT
0. 背景 题目: FastBERT: a Self-distilling BERT with Adaptive Inference Time 机构:北大.腾讯.北师大 作者:Weijie Liu, ...
-
用Transformer进行图像语义分割,性能超最先进的卷积方法!
重磅干货,第一时间送达 丰色 发自 凹非寺 报道 | 量子位 正如大家所知,在进行图像语义分割时,图像被编码成一系列补丁后往往很模糊,需要借助上下文信息才能被正确分割. 因此上下文建模对图像语义分割的 ...
-
DeepfakeUCL:基于无监督对比学习的深度假检测
重磅干货,第一时间送达 小黑导读 论文是学术研究的精华和未来发展的明灯.小黑决心每天为大家带来经典或者最新论文的解读和分享,旨在帮助各位读者快速了解论文内容.个人能力有限,理解难免出现偏差,建议对文章 ...
-
如何迈向高效深度神经网络模型架构?
最近几年,随着公共领域中的数据规模和计算机的运算能力的大幅提升,神经网络模型在视觉,自然语言处理等领域取得了飞速的发展,各种任务的性能指标被不断刷新.人们为了追求更高的性能,提升模型的学习能力,设计了 ...
-
【最新刷榜】层次化视觉Transformer来啦!性能大幅优于DeiT、ViT和EfficientN...
[导读]本文主要介绍最新TransFormer成果,目前Swin Transformer在各大CV任务上,实现了SOTA的性能,在目标检测任务上刷到58.7 AP(目前第一)!实例分割刷到51.1 M ...
-
2021年了,Transformer有可能替代CNN吗?未来有哪些研究方向?
Transformer 的跨界之旅,从 2020 延续到了 2021. 2020 年 5 月,Facebook AI 推出了 Detection Transformer,用于目标检测和全景分割.这是第 ...
-
谷歌最新提出无需卷积、注意力 ,纯MLP构成的视觉架构!网友:MLP is All You Need...
当前,卷积神经网络(CNN)和基于自注意力的网络(如近来大火的 ViT)是计算机视觉领域的主流选择,但研究人员没有停止探索视觉网络架构的脚步.近日,来自谷歌大脑的研究团队(原 ViT 团队)提出了一种 ...
