NeurIPS2021-《YOLOS》-ViT现在可以做目标检测任务啦!华科提出目标检测新方法YOLOS
相关推荐
-
YOLOS:通过目标检测重新思考Transformer(附源代码)
计算机视觉研究院专栏 作者:Edison_G 最近"计算机视觉研究院"有一段时间没有分享最新技术,但是最近我看了一些之前的检测框架,发现有两个很有意思,不错的框架,接下来我给大家简 ...
-
来自Transformer的降维打击:ReID各项任务全面领先,阿里&浙大提出TransReID
作者丨Happy 审稿丨邓富城 编辑丨极市平台 极市导读 Transformer在ReID领域的第一次全面探索!为更好的利用ReID的数据特性与Transformer的信息嵌入特征,本文提出了两种模块 ...
-
又一篇视觉Transformer综述来了!
重磅干货,第一时间送达 最近 Transformer在CV领域真的'杀疯了',很多CV垂直方向出现了不少工作.其中非常有代表性就是:DETR.ViT等. CVer上周第一时间推送了:华为&北大 ...
-
计算机视觉中的Transformer
作者:Cheng He 编译:ronghuaiyang 导读 将Transformer应用到CV任务中现在越来越多了,这里整理了一些相关的进展给大家. Transformer结构已经在许多自然语言处理 ...
-
2021年了,Transformer有可能替代CNN吗?未来有哪些研究方向?
Transformer 的跨界之旅,从 2020 延续到了 2021. 2020 年 5 月,Facebook AI 推出了 Detection Transformer,用于目标检测和全景分割.这是第 ...
-
搞懂 Vision Transformer 原理和代码,看这篇技术综述就够了(六)
作者丨科技猛兽 编辑丨极市平台 极市导读 本文为详细解读Vision Transformer的第六篇,主要介绍了2种将卷积引入Transformer模型的方法:CvT和CeiT.>>加入极 ...
-
谷歌最新提出无需卷积、注意力 ,纯MLP构成的视觉架构!网友:MLP is All You Need...
当前,卷积神经网络(CNN)和基于自注意力的网络(如近来大火的 ViT)是计算机视觉领域的主流选择,但研究人员没有停止探索视觉网络架构的脚步.近日,来自谷歌大脑的研究团队(原 ViT 团队)提出了一种 ...
-
无需检测器提取特征!LeCun团队提出MDETR:实现真正的端到端多模态推理|ICCV 2021 Oral
作者丨小马 编辑丨极市平台 极市导读 本文提出了MDETR,一种端到端调制检测器,能够根据原始文本query直接来检测图像中的目标,基于Transformer的结构,通过在模型的早期阶段融合这两种模态 ...
-
源码解析目标检测的跨界之星DETR(一)、概述与模型推断
Date: 2020/06/27Author: CW前言:阅读了 DETR 的论文后,近期梳理了相关代码,本系列会结合源码对 DETR 进行解析,包含模型效果的简单演示.训练的 pipeline.ba ...
-
你仅需要看一个序列!YOLOS:重新思考Transformer的泛化性能
作者丨happy 审稿丨邓富城 编辑丨极市平台 极市导读 本文是华科&地平线关于Transformer的迁移学习.泛化性能方面的深度思考.重点揭示了Transformer的迁移学习能力与泛化性 ...
-
极市沙龙|下周六CVPR2021论文线下研讨会邀你参会!坐标深圳
随着三月的到来,春暖花开,时隔一年,极市CV开发者沙龙活动要回归啦!今年线下活动的第一站,将在深圳举行,其他城市的小伙伴不要着急,下一站说不定就在你的城市,可以在评论区留言噢. 本次极市CV开发者沙龙 ...
-
用Pytorch轻松实现28个视觉Transformer,开源库 timm 了解一下!(附代码解读)
作者丨科技猛兽 审稿丨邓富城 编辑丨极市平台 极市导读 本文将介绍一个优秀的PyTorch开源库--timm库,并对其中的vision transformer.py代码进行了详细解读.>> ...