简介机器学习中的特征工程
相关推荐
-
学习R:识别缺失值与将指定数据编码为缺失值
基础不牢,大厦将倒.今天再来练习一个基础操作,在数据框中发现缺失值,以及将指定数据重编码为缺失值. 雇员数据原本是SPSS格式,其中以往经验这个变量有一小部分取值为0的,即无经验,假设我们现在要将其认 ...
-
数据处理如何做?请收好这份实用指南
总会有小伙伴问起"数据是都收集好了,可是应该怎么处理呢?" "对数据中的重复值.异常值有什么好的处理方法?" "我的问卷里既有多选题.填空题,也有量表 ...
-
【机器学习】漫谈特征缩放
作者: 时晴 说起'炼丹'最耗时的几件事,首先就能想到的就是数据清洗,特征工程,还有调参.特征工程真的是老生常谈了,但是特征工程又是最重要的一环,这一步做不好怎么调参也没用.在特征工程中,做特征缩放是 ...
-
各种算法对比以及各自的优缺点
详细:https://www.julyedu.com/question/big/kp_id/23/ques_id/2533 贝叶斯分类法 优点: 对小规模的数据表现良好,适合多分类任务,适合增量式训练 ...
-
【R语言学习7】R语言基本数据管理方法简介
【R语言学习7】R语言基本数据管理方法简介
-
机器学习中的特征工程总结!
文章译者:张峰 内容来源:Datawhale 结构总览 特征工程 传统编程的关注点是代码.在机器学习项目中,关注点变成了特征表示.也就是说,开发者通过添加和改善特征来调整模型."Garbag ...
-
深度特征合成:自动生成机器学习中的特征
英文原文标题:Automated Feature Engineering in Python How to automatically create machine learning features ...
-
ML之DataScience:基于机器学习处理数据科学(DataScience)任务(数据分析、特征工程、科学预测等)的简介、流程、案例应用执行详细攻略
ML之DataScience:基于机器学习处理数据科学(DataScience)任务(数据分析.特征工程.科学预测等)的简介.流程.案例应用执行详细攻略 数据科学的任务(数据分析.特征工程.科学预测等 ...
-
机器学习中,有哪些特征选择的工程方法?
解析: 本题解析来源:@jasonfreak,链接:http://www.cnblogs.com/jasonfreak/p/5448385.html 目录 1 特征工程是什么? 2 数据预处理 2.1 ...
-
ML之LF:机器学习中常见的损失函数(连续型/离散型)的简介、损失函数/代价函数/目标函数之间区别、案例应用之详细攻略
ML之LF:机器学习中常见的损失函数(连续型/离散型)的简介.损失函数/代价函数/目标函数之间区别.案例应用之详细攻略损失函数的简介损失函数,又称目标函数,或误差函数,用来度量网络实际输出与期望输出之 ...
-
ML之FE:数据处理—特征工程之数据集划分成训练集、验证集、测试集三部分简介、代码实现、案例应用之详细攻略
ML之FE:数据处理-特征工程之数据集划分成训练集.验证集.测试集三部分简介.代码实现.案例应用之详细攻略 数据集划分成训练.验证.测试三种数据的简介 分割训练数据前,先打乱了输入数据和教师标签.因为 ...
-
ML之Validation:机器学习中模型验证方法的简介、代码实现、案例应用之详细攻略
ML之Validation:机器学习中模型验证方法的简介.代码实现.案例应用之详细攻略 模型验证方法的简介 1.Hold-out验证 后期更新-- 2.K-折交叉验证 后期更新-- 3.自助重采样 r ...
-
ML之FE:数据处理—特征工程之稀疏特征的简介、如何处理、案例应用之详细攻略
ML之FE:数据处理-特征工程之稀疏特征的简介.如何处理.案例应用之详细攻略 稀疏特征的简介 信号稀疏表示是过去近20年来信号处理界一个非常引人关注的研究领域,众多研究论文和专题研讨会表明了该领域的蓬 ...
-
ML之FE:特征工程中常用的五大数据集划分方法(特殊类型数据分割,如时间序列数据分割法)讲解及其代码
ML之FE:特征工程中常用的五大数据集划分方法(特殊类型数据分割,如时间序列数据分割法)讲解及其代码 特殊类型数据分割 5.1.时间序列数据分割TimeSeriesSplit class TimeSe ...