ML之FE:数据处理—特征工程之稀疏特征的简介、如何处理、案例应用之详细攻略
相关推荐
-
【学术论文】基于深浅特征融合的人脸识别
摘 要 : 针对传统的浅层特征所提取特征的判别性有限.深度特征需要大量带标记样本且训练过程耗时长的问题,提出一种深度及浅层特征融合算法用于人脸识别.首先提取人脸的HOG特征并进行判别性降维:同时 ...
-
动态“神还原”李焕英旧照,用技术致敬每一位妈妈!
来自|机器之心 编辑|张倩 「从我有记忆开始,妈妈就是中年妇女的模样,所以我会忘记,她也曾是花季少女.」 春节档上映的<你好,李焕英>让不少人在影院哭得稀里哗啦,它戳中了每个人心里最柔 ...
-
基于深度学习的城轨列车轴承复合故障诊断研究
随着城市轨道交通运营里程的迅速增加,运送客流规模急剧增大,城轨列车作为城市轨道运输的载体,如何在快速运行条件下保障城轨列车的运行安全已经成为各城市共同面临的严峻考验.以某地铁统计数据为例,在轨道车辆走 ...
-
基于学习字典的稀疏表示方法
基于学习字典的稀疏表示是指:稀疏表示是指用较少的基本信号的线性组合来表达大部分或者全部的原始信号.将样本通过反复迭代的方式转化为最佳的稀疏表达形式,这种反复迭代的过程通常称为"字典学习&qu ...
-
计算机视觉相关干货文章-20190807
计算机视觉相关干货文章-20190807 计算机视觉方向简介 | 从全景图恢复三维结构 计算机视觉方向简介 | 阵列相机立体全景拼接 计算机视觉方向简介 | 单目微运动生成深度图 计算机视觉方向简介 ...
-
【学习笔记】嵌入式技术(6):改进的多姿态矫正的人脸识别算法
2016年微型机与应用第3期 作者:杨作宝1,2,侯凌燕1,2,杨大利1,2 摘要:针对人脸多姿态导致人脸识别率下降这一问题,提出一种改进姿态矫正处理方法,通过改进对人脸特征点的有效定位,来计算人脸姿 ...
-
【学习笔记】基于人脸识别的课堂点名系统
摘要:传统的课堂点名方法效率低下,浪费大量时间.提出基于人脸识别的课堂点名系统,大大提高了课堂点名的效率.本系统提供图像和摄像识别点名,可一次识别多个人脸,同时该系统也对系统难以识别的学生提供手动签到 ...
-
ML之FE:数据处理—特征工程之数据集划分成训练集、验证集、测试集三部分简介、代码实现、案例应用之详细攻略
ML之FE:数据处理-特征工程之数据集划分成训练集.验证集.测试集三部分简介.代码实现.案例应用之详细攻略 数据集划分成训练.验证.测试三种数据的简介 分割训练数据前,先打乱了输入数据和教师标签.因为 ...
-
ML之DataScience:基于机器学习处理数据科学(DataScience)任务(数据分析、特征工程、科学预测等)的简介、流程、案例应用执行详细攻略
ML之DataScience:基于机器学习处理数据科学(DataScience)任务(数据分析.特征工程.科学预测等)的简介.流程.案例应用执行详细攻略 数据科学的任务(数据分析.特征工程.科学预测等 ...
-
ML之LF:机器学习中常见的损失函数(连续型/离散型)的简介、损失函数/代价函数/目标函数之间区别、案例应用之详细攻略
ML之LF:机器学习中常见的损失函数(连续型/离散型)的简介.损失函数/代价函数/目标函数之间区别.案例应用之详细攻略损失函数的简介损失函数,又称目标函数,或误差函数,用来度量网络实际输出与期望输出之 ...
-
ML与math:机器学习与高等数学基础概念、代码实现、案例应用之详细攻略——基础篇
ML与math:机器学习与高等数学基础概念.代码实现.案例应用之详细攻略--基础篇相关文章ML与math:机器学习与高等数学基础概念.代码实现.案例应用之详细攻略--基础篇ML与math:机器学习与高 ...
-
ML之DR之SVD:SVD算法相关论文、算法过程、代码实现、案例应用之详细攻略
ML之DR之SVD:SVD算法相关论文.算法过程.代码实现.案例应用之详细攻略 SVD算法相关论文 奇异值分解Singular Value Decomposition:简称SVD,特征分解的广义化,是 ...
-
ML之GB:GB算法相关论文、相关思路、关键步骤、代码实现、配图集合、案例应用之详细攻略
ML之GB:GB算法相关论文.相关思路.关键步骤.代码实现.配图集合.案例应用之详细攻略 GB算法相关文献.论文 后期更新-- GB算法关键步骤 后期更新-- 1.算法流程 GB算法代码实现 1.Sc ...
-
ML之LF:机器学习中常见损失函数(LiR损失、L1损失、L2损失、Logistic损失)求梯度/求导、案例应用之详细攻略
ML之LF:机器学习中常见损失函数(LiR损失.L1损失.L2损失.Logistic损失)求梯度/求导.案例应用之详细攻略 常见损失函数求梯度案例 1.线性回归求梯度 2.L2损失函数梯度 3.L1正 ...
-
ML之Validation:机器学习中模型验证方法的简介、代码实现、案例应用之详细攻略
ML之Validation:机器学习中模型验证方法的简介.代码实现.案例应用之详细攻略 模型验证方法的简介 1.Hold-out验证 后期更新-- 2.K-折交叉验证 后期更新-- 3.自助重采样 r ...
-
ML之SR:Softmax回归(Softmax Regression)的简介、使用方法、案例应用之详细攻略
ML之SR:Softmax回归(Softmax Regression)的简介.使用方法.案例应用之详细攻略 Softmax回归的简介 Softmax逻辑回归模型是logistic回归模型在多分类问题上 ...