ML之GB:GB算法相关论文、相关思路、关键步骤、代码实现、配图集合、案例应用之详细攻略
相关推荐
-
梯度消失、梯度爆炸
梯度消失.梯度爆炸 梯度消失:这本质上是由于激活函数的选择导致的, 最简单的sigmoid函数为例,在函数的两端梯度求导结果非常小(饱和区),导致后向传播过程中由于多次用到激活函数的导数值使得整体的乘 ...
-
深度学习六十问!一位算法工程师经历30+场CV面试后总结的常见问题合集下篇(含答案)
作者丨灯会 来源丨极市平台 编辑丨极市平台 极市导读 本篇主要包含数据类问题.正则化.激活函数与梯度以及回归.SVM支持向量机.K-Means均值以及机器学习相关常考内容等相关面试经验. >&g ...
-
梯度下降法的关键点
梯度下降法的关键点 梯度下降法沿着梯度的反方向进行搜索,利用了函数的一阶导数信息.梯度下降法的迭代公式为: 根据函数的一阶泰勒展开,在负梯度方向,函数值是下降的.只要学习率设置的足够小,并且没有到达梯 ...
-
神经网络中激活函数的真正意义?
神经网络中激活函数的真正意义?一个激活函数需要具有哪些必要的属性?还有哪些属性是好的属性但不必要的? (1)非线性:即导数不是常数.这个条件是多层神经网络的基础,保证多层网络不退化成单层线性网络.这也 ...
-
CV之NS:图像风格迁移(Neural Style 图像风格变换)算法简介、过程思路、关键步骤配图、案例应用之详细攻略
CV之NS:图像风格迁移(Neural Style 图像风格变换)算法简介.过程思路.关键步骤配图.案例应用之详细攻略 图像风格迁移算法简介 相关论文 1.A Neural Algorithm of ...
-
ML之FE:数据处理—特征工程之稀疏特征的简介、如何处理、案例应用之详细攻略
ML之FE:数据处理-特征工程之稀疏特征的简介.如何处理.案例应用之详细攻略 稀疏特征的简介 信号稀疏表示是过去近20年来信号处理界一个非常引人关注的研究领域,众多研究论文和专题研讨会表明了该领域的蓬 ...
-
ML之catboost:catboost模型中常用的Pool类型数据结构源代码解读、案例应用之详细攻略
ML之catboost:catboost模型中常用的Pool类型数据结构源代码解读.案例应用之详细攻略 catboost模型中常用的Pool类型数据源结构代码解读 Pool简介 Pool 是在CatB ...
-
ML之DR之SVD:SVD算法相关论文、算法过程、代码实现、案例应用之详细攻略
ML之DR之SVD:SVD算法相关论文.算法过程.代码实现.案例应用之详细攻略 SVD算法相关论文 奇异值分解Singular Value Decomposition:简称SVD,特征分解的广义化,是 ...
-
Competition——互联网比赛(编程相关):国内外各种互联网比赛举办时间、条件、细节等详细攻略
Competition--互联网比赛(编程相关):国内外各种互联网比赛举办时间.条件.细节等详细攻略相关内容Competition--互联网比赛(编程相关):国内外各种互联网比赛举办时间.条件.细节等 ...
-
DL:深度学习(神经网络)的简介、基础知识(神经元/感知机、训练策略、预测原理)、算法分类、经典案例应用之详细攻略
DL:深度学习(神经网络)的简介.基础知识(神经元/感知机.训练策略.预测原理).算法分类.经典案例应用之详细攻略 深度学习(神经网络)的简介 深度学习(Deep Learning, DL)或阶层学习 ...
-
DL之BP:神经网络算法简介之BP算法简介(链式法则/计算图解释)、案例应用之详细攻略
DL之BP:神经网络算法简介之BP算法简介(链式法则/计算图解释).案例应用之详细攻略相关文章:DL之DNN之BP:神经网络算法简介之BP算法/GD算法之不需要额外任何文字,只需要八张图讲清楚BP类神 ...
-
ML之LF:机器学习中常见的损失函数(连续型/离散型)的简介、损失函数/代价函数/目标函数之间区别、案例应用之详细攻略
ML之LF:机器学习中常见的损失函数(连续型/离散型)的简介.损失函数/代价函数/目标函数之间区别.案例应用之详细攻略损失函数的简介损失函数,又称目标函数,或误差函数,用来度量网络实际输出与期望输出之 ...
-
ML与math:机器学习与高等数学基础概念、代码实现、案例应用之详细攻略——基础篇
ML与math:机器学习与高等数学基础概念.代码实现.案例应用之详细攻略--基础篇相关文章ML与math:机器学习与高等数学基础概念.代码实现.案例应用之详细攻略--基础篇ML与math:机器学习与高 ...