ML之SVM:利用SVM算法对手写数字图片识别数据集(PCA降维处理)进行预测并评估模型(两种算法)性能
相关推荐
-
9种常用的机器学习算法实现
陈雷慧(豆苗) 淘系技术 简介 根据机器学习的任务或应用情况的不同,我们通常把机器学习分为三大类: 1.监督学习(Supervised Learning,SL),这类算法的工作原理是使用带标签的训练数 ...
-
【技术综述】人脸表情识别研究
李振东 北京邮电大学硕士在读,计算机视觉方向 言有三 毕业于中国科学院,计算机视觉方向从业者,有三工作室等创始人 作者 | 李振东/言有三 编辑 | 言有三 随着机器学习和深度神经网络两个领域的迅速发 ...
-
学术简报︳蒸汽冷却型燃料电池系统在线故障诊断的新方法
摘要 西南交通大学电气工程学院的研究人员刘嘉蔚.李奇.陈维荣.余嘉熹.燕雨,在2019年第18期<电工技术学报>上撰文(论文标题为"基于在线序列超限学习机和主成分分析的蒸汽冷却型 ...
-
ML之DR之PCA:利用PCA对手写数字图片识别数据集进行降维处理(理解PCA)
ML之DR之PCA:利用PCA对手写数字图片识别数据集进行降维处理(理解PCA) 初步理解PCA #理解PCA:线性相关矩阵秩计算样例 import numpy as np M = np.array( ...
-
ML之SVM:基于SVM(支持向量机)之SVC算法对手写数字图片识别进行预测
ML之SVM:基于SVM(支持向量机)之SVC算法对手写数字图片识别进行预测 输出结果 设计思路 核心代码 X_train = ss.fit_transform(X_train) X_test = s ...
-
TF之DNN:利用DNN【784→500→10】对MNIST手写数字图片识别数据集(TF自带函数下载)预测(98%)+案例理解DNN过程
TF之DNN:利用DNN[784→500→10]对MNIST手写数字图片识别数据集(TF自带函数下载)预测(98%)+案例理解DNN过程 输出结果 案例理解DNN过程思路 1.一张图像数组形状的变化: ...
-
ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类
ML之K-means:基于(完整的)手写数字图片识别数据集利用K-means算法实现图片聚类 输出结果 设计思路 核心代码 metrics.adjusted_rand_score(y_test, y_ ...
-
PyTorch之LeNet-5:利用PyTorch实现最经典的LeNet-5卷积神经网络对手写数字图片识别CNN
PyTorch之LeNet-5:利用PyTorch实现最经典的LeNet-5卷积神经网络对手写数字图片识别CNN 训练过程 代码设计 #PyTorch:利用PyTorch实现最经典的LeNet卷积神经 ...
-
DL之DNN:利用DNN算法对mnist手写数字图片识别数据集(sklearn自带,1797*64)训练、预测(95%)
DL之DNN:利用DNN算法对mnist手写数字图片识别数据集(sklearn自带,1797*64)训练.预测(95%) 数据集展示 先查看sklearn自带digits手写数据集(1797*64) ...
-
DL之DNN:利用DNN【784→50→100→10】算法对MNIST手写数字图片识别数据集进行预测、模型优化
DL之DNN:利用DNN[784→50→100→10]算法对MNIST手写数字图片识别数据集进行预测.模型优化 导读 目的是建立三层神经网络,进一步理解DNN内部的运作机制 输出结果 设计思路 核心代 ...
-
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Sequential)利用MNIST(手写数字图片识别)数据集实现多分类预测 输出结果 1.10.0 Size of: - Trai ...
-
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测
DL之CNN:利用卷积神经网络算法(2→2,基于Keras的API-Functional)利用MNIST(手写数字图片识别)数据集实现多分类预测 输出结果 下边两张图对应查看,可知,数字0有965个是 ...