ML之FE:数据处理—特征工程之高维组合特征的处理案例(矩阵分解)——基于LoR算法的广告点击预估问题
相关推荐
-
奇异值分解
奇异值分解 矩阵对角化只适用于方阵,如果不是方阵也可以进行类似的分解,这就是奇异值分解,简称SVD.假设A是一个m x n的矩阵,则存在如下分解: 其中U为m x m的正交矩阵,其列称为矩阵A的左奇异 ...
-
ML之LoR:基于LoR算法实现对非线性数据集点进行绘制决策边界
ML之LoR:基于LoR算法实现对非线性数据集点进行绘制决策边界 基于LoR算法实现对非线性数据集点进行绘制决策边界 1.查看数据集 import numpy as np from sklearn.d ...
-
ML之FE:数据处理—特征工程之数据集划分成训练集、验证集、测试集三部分简介、代码实现、案例应用之详细攻略
ML之FE:数据处理-特征工程之数据集划分成训练集.验证集.测试集三部分简介.代码实现.案例应用之详细攻略 数据集划分成训练.验证.测试三种数据的简介 分割训练数据前,先打乱了输入数据和教师标签.因为 ...
-
ML之FE:数据处理—特征工程之稀疏特征的简介、如何处理、案例应用之详细攻略
ML之FE:数据处理-特征工程之稀疏特征的简介.如何处理.案例应用之详细攻略 稀疏特征的简介 信号稀疏表示是过去近20年来信号处理界一个非常引人关注的研究领域,众多研究论文和专题研讨会表明了该领域的蓬 ...
-
ML之FE:利用【数据分析+数据处理】算法对国内某平台上海2020年6月份房价数据集【12+1】进行特征工程处理(史上最完整,建议收藏)
ML之FE:利用[数据分析+数据处理]算法对国内某平台上海2020年6月份房价数据集[12+1]进行特征工程处理(史上最完整,建议收藏) 相关文章 ML之FE:利用[数据分析+数据处理]算法对国内某平 ...
-
ML之FE:结合Kaggle比赛的某一案例细究特征工程(Feature Engineering)思路框架
ML之FE:结合Kaggle比赛的某一案例细究特征工程(Feature Engineering)思路框架 Feature Engineering思路框架 1.结合Kaggle比赛的某一案例细究Feat ...
-
ML之FE:利用FE特征工程(单个特征及其与标签关系的可视化)对RentListingInquries(Kaggle竞赛)数据集实现房屋感兴趣程度的多分类预测
ML之FE:利用FE特征工程(单个特征及其与标签关系的可视化)对RentListingInquries(Kaggle竞赛)数据集实现房屋感兴趣程度的多分类预测 输出结果 RentListingInqu ...
-
ML之FE:利用FE特征工程(分析两两数值型特征之间的相关性)对AllstateClaimsSeverity(Kaggle2016竞赛)数据集实现索赔成本值的回归预测
ML之FE:利用FE特征工程(分析两两数值型特征之间的相关性)对AllstateClaimsSeverity(Kaggle2016竞赛)数据集实现索赔成本值的回归预测 输出结果 1.数据集简介 Dat ...
-
ML之FE:基于FE特征工程对RentListingInquries数据集进行预处理并导出为三种格式文件(csv格式/txt格式/libsvm稀疏txt格式)
ML之FE:基于FE特征工程对RentListingInquries数据集进行预处理并导出为三种格式文件(csv格式/txt格式/libsvm稀疏txt格式)输出结果1.1.RentListingIn ...
-
ML之FE:基于LiR/Ridge/Lasso/ElasticNet/AvgModels/RF算法(GSCV) 利用某市房价数据集(特征工程处理)进行房价回归预测
ML之FE:基于LiR/Ridge/Lasso/ElasticNet/AvgModels/RF算法(GSCV) 利用某市房价数据集(特征工程处理)进行房价回归预测 输出结果 1.输出基本信息 bj_d ...