ML之分类预测:以六类机器学习算法(kNN、逻辑回归、SVM、决策树、随机森林、提升树、神经网络)对糖尿病数据集(8→1)实现二分类模型评估案例来理解和认知机器学习分类预测的模板流程
相关推荐
-
深入解析机器学习算法有哪些?
机器人学是一个多领域的交叉学科,包含了许多学科:包括概率论.统计学.逼近论.凸分析.算法复杂性理论等.专攻计算机如何模拟或实现人的学习行为,以获得新的知识或技能,重组已有的知识结构,使其持续地提高其表 ...
-
ML之PLiR之LARS:利用LARS算法求解ElasticNet回归类型问题(实数值评分预测)
ML之PLiR之LARS:利用LARS算法求解ElasticNet回归类型问题(实数值评分预测) 设计思路 更新-- 输出结果 ['"alcohol"', '"volat ...
-
ML之PLiR之Glmnet:利用Glmnet算法求解ElasticNet回归类型问题(实数值评分预测)
ML之PLiR之Glmnet算法:利用Glmnet算法求解ElasticNet回归类型问题(实数值评分预测) 输出结果 0 2 1 2 2 2 3 3 4 3 5 3 6 3 7 3 8 3 9 2 ...
-
ML之PLiR之LARS:利用LARS算法求解ElasticNet回归类型(包括类别编码+属性重要程度排序)问题(实数值年龄预测)
ML之PLiR之LARS:利用LARS算法求解ElasticNet回归类型(包括类别编码+属性重要程度排序)问题(实数值年龄预测) 输出结果 设计思路 核心代码 xCoded = [] for row ...
-
R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测
原文链接:http://tecdat.cn/?p=17950 在本文中,我们使用了逻辑回归.决策树和随机森林模型来对信用数据集进行分类预测并比较了它们的性能.数据集是 credit=read.csv( ...
-
ML之RF:利用Js语言设计随机森林算法【DT之CART算法(gain index)】&并应用随机森林算法
ML之RF:利用Js语言设计随机森林算法[DT之CART算法(gain index)]&并应用随机森林算法 输出结果 设计思路 代码实现(部分代码) var doTest = function ...
-
ML/DL之预测分析类:利用机器学习算法进行预测分析的简介、分析、代码实现之详细攻略
ML/DL之预测分析类:利用机器学习算法进行预测分析的简介.分析.代码实现之详细攻略 机器学习算法进行预测的简介 1.推荐论文 <An Empirical Comparison of Super ...
-
ML之多分类预测之PLiR:使用PLiR实现对六类label数据集进行多分类
ML之多分类预测之PLiR:使用PLiR实现对六类label数据集进行多分类 输出结果 [[1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0. ...
-
ML之分类预测:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测
ML之分类预测:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测 输出结果 数据集展示 输出结果 1.k-NN k-NN:Accuracy of K ...
-
ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集【13+1,506】进行回归预测(房价预测)来比较各模型性能
ML之回归预测:利用13种机器学习算法对Boston(波士顿房价)数据集[13+1,506]进行回归预测(房价预测)来比较各模型性能 导读 通过利用13种机器学习算法,分别是LiR.kNN.SVR.D ...