基于DL/T 1230和DL/T 476的过程层设备虚拟面板设计
相关推荐
-
液压CAT系统的软件
............ 传统的液压CAT采用DOS操作系统,目前已采用Windows2000或Windows NT操作系统.图形用户接口(GUI),大大改善了测试系统的运行界面,其多任务和多线程能力 ...
-
ML&DL&RL:ML&DL相关概念的原始英文解释——对理解最初的ML和DL的相关概念的定义非常有用
ML&DL:ML&DL相关概念的原始英文解释--对理解最初的ML和DL的相关概念的定义非常有用 ML分类概念 1.Parametric and Nonparametric Algori ...
-
DL之Keras:基于Keras框架建立模型实现【预测】功能的简介、设计思路、案例分析、代码实现之详细攻略(经典,建议收藏)
DL之Keras:基于Keras框架建立模型实现[预测]功能的简介.设计思路.案例分析.代码实现之详细攻略(经典,建议收藏) Keras框架使用分析 Keras框架设计思路 案例分析 1.实现分类预测 ...
-
DL之Yolov3:基于深度学习Yolov3算法实现视频目标检测
DL之Yolov3:基于深度学习Yolov3算法实现视频目标检测之对<俄罗斯总统普京对沙特王储摊的"友好摊手"瞬间-东道主俄罗斯5-0完胜沙特>视频段实时检测 导读 ...
-
DL之NN:基于(sklearn自带手写数字图片识别数据集)+自定义NN类(三层64→100→10)实现97.5%准确率
DL之NN:基于(sklearn自带手写数字图片识别数据集)+自定义NN类(三层64→100→10)实现97.5%准确率 输出结果 核心代码 #DL之NN:基于sklearn自带手写数字图片识别数据集 ...
-
DL之HNN:基于HNN(subplot)将凌乱数字矩阵图像(模拟手写数字图片)实现转为最相近的阿拉伯数字
DL:基于HNN将凌乱数字矩阵图像(模拟手写数字图片)实现转为最相近的阿拉伯数字 输出结果 代码设计 #DL:基于HNN将凌乱数字矩阵图像(模拟手写数字图片)实现转为最相近的阿拉伯数字 import ...
-
DL之RBM:基于RBM实现手写数字图片识别提高准确率
DL之RBM:基于RBM实现手写数字图片识别提高准确率 输出结果 设计代码 import numpy as np import matplotlib.pyplot as plt from sklear ...
-
DL:基于sklearn的加利福尼亚房价数据集实现GD算法
DL:基于sklearn的加利福尼亚房价数据集实现GD算法 输出结果 该数据包含9个变量的20640个观测值,该数据集包含平均房屋价值作为目标变量和以下输入变量(特征):平均收入.房屋平均年龄.平均房 ...
-
DL之DNN:基于自定义数据集利用深度神经网络(输入层(10个unit)→2个隐藏层(10个unit)→输出层1个unit)实现回归预测实现代码
DL之DNN:基于自定义数据集利用深度神经网络(输入层(10个unit)→2个隐藏层(10个unit)→输出层1个unit)实现回归预测实现代码 基于自定义数据集利用深度神经网络(输入层(10个uni ...
-
DL之DNN:基于神经网络(从1层~50层)DNN算法实现对非线性数据集点进行绘制决策边界
DL之DNN:基于神经网络(从1层~50层)DNN算法实现对非线性数据集点进行绘制决策边界 输出结果 设计代码 首先查看数据集 import numpy as np from sklearn.data ...