DL之DNN:基于自定义数据集利用深度神经网络(输入层(10个unit)→2个隐藏层(10个unit)→输出层1个unit)实现回归预测实现代码
相关推荐
-
气象编程 | PyAOS基础教程三:自定义函数
气象编程 | PyAOS基础教程三:自定义函数
-
Python可视化 5. 使用Matplotlib数据可视化
全文共4750字,预计阅读时间20分钟. 第五章 使用NumPy和Matplotlib进行数据可视化 目录 一.Matplotlib 二.使用NumPy和Matplotlib实现可视化 三.单线图(S ...
-
SAP LSMW 事务代码HUPAST的录屏后台执行报错 - Runtime error RAISE_EXCEPTION has occurred - 之分析
SAP LSMW 事务代码HUPAST的录屏后台执行报错 - Runtime error RAISE_EXCEPTION has occurred - 之分析 因项目上成品库存管理启用了handlin ...
-
SAP QM 由于存在未清TO单导致QA11失败
业务人员使用事务代码QA11对于某个物料批次执行使用决策,系统报错:No posting possible due to open transfer orders for storage unit C ...
-
ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性判别分析算法进行二分类预测(决策边界可视化)
ML:基于自定义数据集利用Logistic.梯度下降算法GD.LoR逻辑回归.Perceptron感知器.支持向量机(SVM_Linear.SVM_Rbf).LDA线性判别分析算法进行二分类预测(决策 ...
-
DL之DNN:自定义2层神经网络TwoLayerNet模型(计算梯度两种方法)利用MNIST数据集进行训练、预测
DL之DNN:自定义2层神经网络TwoLayerNet模型(计算梯度两种方法)利用MNIST数据集进行训练.预测 导读 利用python的numpy计算库,进行自定义搭建2层神经网络TwoLayerN ...
-
DL之DNN:自定义2层神经网络TwoLayerNet模型(封装为层级结构)利用MNIST数据集进行训练、GC对比
DL之DNN:自定义2层神经网络TwoLayerNet模型(封装为层级结构)利用MNIST数据集进行训练.GC对比 导读 神经网络算法封装为层级结构的作用.在神经网络算法中,通过将 ...
-
DL之DCGAN:基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集实现图像生成
DL之DCGAN:基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集实现图像生成 相关文章 DL之DCGAN:基于keras框架利用深度卷积对抗网络DCGAN算法对MNIST数据集 ...
-
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能 输出结果 ====== ...
-
DL之DNN:自定义MultiLayerNet【6*100+ReLU,SGD】对MNIST数据集训练进而比较【多个超参数组合最优化】性能
DL之DNN:自定义MultiLayerNet[6*100+ReLU,SGD]对MNIST数据集训练进而比较[多个超参数组合最优化]性能 输出结果 val_acc:0.14 | lr:4.370890 ...
-
ML之FE:基于自定义数据集(银行客户信息贷款和赔偿)对比实现特征衍生(手动设计新特征、利用featuretools工具实现自动特征生成)
ML之FE:基于自定义数据集(银行客户信息贷款和赔偿)对比实现特征衍生(手动设计新特征.利用featuretools工具实现自动特征生成)相关文章ML之FE:基于自定义数据集(银行客户信息贷款和赔偿) ...
-
DL之DNN优化技术:利用Batch Normalization(简介、入门、使用)优化方法提高DNN模型的性能
DL之DNN优化技术:利用Batch Normalization优化方法提高DNN模型的性能 Batch Normalization简介 1.Batch Norm的反向传播的推导有些复杂,但是可借助于 ...
-
DL之DNN优化技术:利用Dropout(简介、使用、应用)优化方法提高DNN模型的性能
DL之DNN优化技术:利用Dropout(简介.入门.使用)优化方法提高DNN模型的性能 Dropout简介 随机失活(dropout)是对具有深度结构的人工神经网络进行优化的方法,在学习过程中通过将 ...