Keras之MLP:利用MLP【Input(8)→(12)(relu)→O(sigmoid+二元交叉)】模型实现预测新数据(利用糖尿病数据集的八个特征实现二分类预测
相关推荐
-
【连载16】GoogLeNet Inception V1
公众号后台回复"python",立刻领取100本机器学习必备Python电子书 GoogLeNet是由google的Christian Szegedy等人在2014年的论文< ...
-
「PyTorch自然语言处理系列」3. 神经网络的基本组件(上)
数据与智能 226篇原创内容 公众号 来源 | Natural Language Processing with PyTorch 作者 | Rao,McMahan 译者 | Liangchu 校对 ...
-
Python 中组合分类和回归的神经网络模型
某些预测问题需要为同一输入预测数字值和类别标签.一种简单的方法是在同一数据上开发回归和分类预测模型,然后依次使用这些模型.另一种通常更有效的方法是开发单个神经网络模型,该模型可以根据同一输入预测数字和 ...
-
【TensorFlow2.0】以后我们再也离不开Keras了?
TensorFlow2.0 Alpha版已经发布,在2.0中最重要的API或者说到处都出现的API是谁,那无疑是Keras.因此用过2.0的人都会吐槽全世界都是Keras.今天我们就来说说Keras这 ...
-
【Keras速成】Keras图像分类从模型自定义到测试
这是给大家准备的Keras速成例子 杨照璐 计算机视觉.深度学习方向从业者 作者 | 杨照璐(微信号lwyzl0821) 编辑 | 言有三 这一次我们讲讲keras这个简单.流行的深度学习框架,一个图 ...
-
基于NumPy和图像分类的人工神经网络构建
本文利用NumPy系统在Python中构建人工神经网络,以便为Fruits360数据集执行图像分类应用程序. 本文提及的所有内容(即图像和源代码,不包括Fruits360的图片)均来自于Ahmed F ...
-
Keras之DNN:利用DNN【Input(8)→(12+8)(relu)→O(sigmoid)】模型实现预测新数据(利用糖尿病数据集的八个特征进行二分类预测
Keras之DNN:利用DNN[Input(8)→(12+8)(relu)→O(sigmoid)]模型实现预测新数据(利用糖尿病数据集的八个特征进行二分类预测 输出结果 [1.0, 0.0, 1.0, ...
-
ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性判别分析算法进行二分类预测(决策边界可视化)
ML:基于自定义数据集利用Logistic.梯度下降算法GD.LoR逻辑回归.Perceptron感知器.支持向量机(SVM_Linear.SVM_Rbf).LDA线性判别分析算法进行二分类预测(决策 ...
-
ML之分类预测:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测
ML之分类预测:基于sklearn库的七八种机器学习算法利用糖尿病(diabetes)数据集(8→1)实现二分类预测 输出结果 数据集展示 输出结果 1.k-NN k-NN:Accuracy of K ...
-
ML之LoR&Bagging&RF:依次利用LoR、Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测(最全)
ML之LoR&Bagging&RF:依次利用LoR.Bagging.RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测 输出结果 1.数据集可视化以及统计分析 ...
-
ML之LoR&Bagging&RF:依次利用Bagging、RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测——模型融合
ML之LoR&Bagging&RF:依次利用Bagging.RF算法对泰坦尼克号数据集 (Kaggle经典案例)获救人员进行二分类预测--模型融合 输出结果 设计思路 核心代码 RF算 ...
-
ML之Xgboost:利用Xgboost模型对数据集(比马印第安人糖尿病)进行二分类预测(5年内是否患糖尿病)
ML之Xgboost:利用Xgboost模型对数据集(比马印第安人糖尿病)进行二分类预测(5年内是否患糖尿病) 输出结果 X_train内容: [[ 3. 102. 44. ... 30.8 0.4 ...
-
ML之Xgboost:利用Xgboost模型(7f-CrVa+网格搜索调参)对数据集(比马印第安人糖尿病)进行二分类预测
ML之Xgboost:利用Xgboost模型(7f-CrVa+网格搜索调参)对数据集(比马印第安人糖尿病)进行二分类预测 输出结果 设计思路 核心代码 grid_search = GridSearch ...
-
TF之LiR:利用TF自定义一个线性分类器LiR对乳腺癌肿瘤数据集进行二分类预测(良/恶性)
TF之LiR:利用TF自定义一个线性分类器LiR对乳腺癌肿瘤数据集进行二分类预测(良/恶性) 输出结果 设计思路 核心代码 X_train = np.float32(train[['Clump Thi ...
-
ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集【特征列分段→独热编码】进行回归预测(房价预测)+预测新数据得分
ML之xgboost:利用xgboost算法对Boston(波士顿房价)数据集[特征列分段→独热编码]进行回归预测(房价预测)+预测新数据得分 导读 对Boston(波士顿房价)数据集进行特征工程,分 ...
