几何变换综合题之轴对称及最值(九年级)
相关推荐
-
【一题十解】解题大赛结果整理
题1 如图,四边形ABCD内接于⊙O,若AB·DE=AD·BE, 求证:BC=CD. 原型 如图,AD是△ABC的内角平分线,求证:AB/AC=BD/CD . 法一 无辅证法: 先证明△ABE∽△DC ...
-
中考数学:每日一题 伴你中考(31)
每日一题 伴你中考(31) 试题解析类 王继广 线段最小值的相关考查,大多是:两点之间,线段最短:将军饮马模型:垂线段最短:轴对称条件下的线段最值,对已知动点条件进行分析,通常构造隐形圆,构造&quo ...
-
【暑假特辑6】2018中考分类解析——四边形(上)(江苏各市精选)
Jul 14 ♪ 写在前面 本讲,我们继续对2018全国中考作分类解析,主要涉及江苏省内的四边形. 话不多说,直接开始!因为假期外出,您有10多天的时间慢慢细读! 例1: 分析: (1)要证∠BOD= ...
-
角平分线5大模型 、中点4大模型、线段间...
角平分线5大模型 .中点4大模型.线段间的关系.对角互补四大模型. 中考数学22个精选模型专题部分内容分享.
-
2021.3.16 每日一练 勾股定理...
2021.3.16 每日一练 勾股定理 学段: 八年级下册 知识点: 勾股定理与逆定理的运用 技巧: ①由角(90°)的关系,得到边的关系,由 边的关系,再得出角的数量关系: ②准确表示出线段与线段之 ...
-
本题属于几何变换综合题,考查了相似三角形...
本题属于几何变换综合题,考查了相似三角形的判定和性质,解直角三角形,等腰三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.
-
71个模型 | 62-68:二次函数或多函数综合题 函数法求最值(118页word)
71个模型 | 62-68:二次函数或多函数综合题 函数法求最值(118页word)
-
压轴题打卡147:几何变换综合题
综合与实践 问题情境 在综合与实践课上,老师让同学们以"菱形纸片的剪拼"为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△AB ...
-
一题多解:哈尔滨道里区九年级上期末,多种解法求线段长度
我们先看题目 第一种思路:我好兄弟几何狂魔常说无脑倍长中线,发现这招屡试不爽,在初中几何题中非常实用.本题给了中点想到倍长构造全等,然后利用平行垂直推出两个三角形都是等腰直角三角形.设未知数,已知面积 ...
-
【新题速递】2020-2021学年九年级温州期末数学卷第18题详解
2021 2020-2021学年温州九上期末数学卷第18题 原题呈现 (2020温州九上期末卷T18)图1是某游乐园的海盗船,A,B两位同学坐在海盗船上的示意图如图2,开始状态下OA=OB,且A,B离 ...
-
初中数学难点突破:动点轨迹与路径最值综合题
例1.如图,点A是直线y=-x上的动点,点B是x轴上的动点,在矩形ABCD中,AB=2,AD=1,则OD的最大值为 . 解析:本题从常规方法看,应寻找D点轨迹,但这里似乎不好确定D的运动轨迹是 ...
-
八下25讲 期末压轴特训3 双动点,最值综合题 全覆盖
写在前面 前两讲,我们对函数图象与面积,四边形存在性问题作了一个细致的总结归纳,作为这个系列的最后一讲,笔者选择本学期中的经典动点与最值问题,帮助同学们在填空选择压轴题有所突破! 一.动点专练 例1 ...
-
2.八年级数学:怎么求m,n的值?看起来有点难,分式的几个基础考点综合题
八年级数学:怎么求m,n的值?看起来有点难,分式的几个基础考点综合题.大家先在草稿本上认真地做一遍,然后再看后面的视频.期待您在评论区留言. (方老师数学课堂矩阵公众号,注重基础常考题,全部免费分享) ...
-
【难题突破】动点轨迹与路径最值综合题
难题是高冷孤傲的美女,她戴着层层面纱,穿着厚厚伪装,若你能卸下她的所有遮挡,就会看到那亲切可爱的熟悉面容-- 本期文章在前面基础上分析较难的动点轨迹与路径最值结合的综合性问题,常规问题和基本模型请参阅 ...
