【最值系列】主从联动破解线段最值
相关推荐
-
2021中考热点,线段最值动点问题
2021中考热点,线段最值动点问题
-
比值最值另一题解析
今天时间比较紧张,所以没来得及写:两定点到定圆上一动点的线段之比的最值(3) 增加一道例题,来自姚琛老师 预告:两定点到定圆上一动点的线段之比的最值(3)将要写的相对运动的等价命题:
-
浅析朋友问一最值小题
最近琐事比较多,好几天没有写文章了!恰好今天上午同行朋友问了一小题,就拿这个题练练手,作为新内容的开始吧! 题目如下: 重新画图如下图所示,内容就不在重复了! 这里提供两种方法,一代数,一几何! (代 ...
-
黄老师聊数学(90)初中数学难题:动点 位似 旋转 最值,圆形的乾坤大挪移
来看两道很好的初中数学难题,表面上看像是关联动点的运动问题,但是其蕴含更本质的基本原理.这两道题乍看有点难,用初中的方法几乎无从入手.但是一旦点破就变得比较简单.涉及到的原理包括动点.旋转.位似.图形 ...
-
中考热点问题解题集--几何综合压轴题(三角函数边角转化、破解线段最值问题)
WINTER <怎样解题>一书的作者匈牙利数学家波利亚说过,掌握数学就意味着要善于解题.做题不在多而在精,题要解得精彩:对待解题的思想方法要对头,要通过做题,深刻理解概念,扎实掌握基本知识 ...
-
旋转变换:求线段最值中考热点之求线段最值...
旋转变换:求线段最值 中考热点之求线段最值,后期陆续发布求线段最值的常见解题策略. 分析:将△ACD顺时针旋转90°,得到△ABE ∴CD=BE,且△ADE为等腰直角三角形 DE=√2DA=5√2, ...
-
巧构相似化系数 破解线段和最值
GRADUATION SEASON <怎样解题>一书的作者匈牙利数学家波利亚说过,掌握数学就意味着要善于解题.做题不在多而在精,题要解得精彩:对待解题的思想方法要对头,要通过做题,深刻理解 ...
-
【几何模型】初中数学最值系列之瓜豆原理(线段篇)
本文为"初中几何典型解题模型"新增内容! 初中几何典型解题模型 --<初中数学典型题思路分析>附赠之一 目 录 第一章 8字模型与飞标模型 [模型2:角的飞镖模型] ...
-
【中考2020】“线段最值”系列之——轨迹思想
动点轨迹问题是目前中考题中比较热门的题型,熟练掌握其基本原理对于解决一些特定问题大有帮助,初中阶段主要的轨迹有"直线型"和"圆弧型"两类,本文就常用的基本轨迹和 ...
-
最值模型之主从联动
最值模型之主从联动
-
中考数学:“线段最值”系列之(1)
天下难事必作于易,天下大事必作于细.身为基层一线教师,随着时间的推移和工作经验的积累越发感叹唯将工作做细做实,转变传统的教学观念,才能跟上时代的步伐.近期阅读多位大师的杰作,收获颇丰,不时有共鸣之处. ...
-
中考数学:“线段最值”系列之(2)
一.原型再现 唐朝诗人李颀的诗<古从军行>开头两句说:"白日登山望烽火,黄昏饮马傍交河"诗中隐含着一个有趣的数学问题. 这个问题早在古罗马时代就有了,传说亚历山大城有一 ...
-
中考数学:“线段最值”系列之(3)
在前两期中,多数作图都采用了对称转化.平移转化等转化思想,最终将问题化归为基本知识"两点之间,线段最短"或"垂线段最短"予以解决.本文将从其他角度精选部分经典例 ...
